• Title/Summary/Keyword: Electric appliance

Search Result 143, Processing Time 0.024 seconds

The Flow Analysis for Vibration and Noise Diagnostic of Vacuum Cleaner Fan Motor (진공청소기 팬 모터의 진동 및 소음원인 분석을 위한 유동해석)

  • 김재열;곽이구;안재신;양동조;송경석;박기형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.56-63
    • /
    • 2004
  • Recently technology resulted in highly efficient and multiple-functional electric appliances considering environmental problems. One of the environmental problems is noise of a product in respect to its function. A vacuum cleaner is an essential electric appliance in our daily lives. However, severe noise resulted from high motor speed for improving the function of the appliance is a nuisance for the user. This noise is caused by vibration from various parts of the appliance and fluid noise during a series of intake and exhaust processes while rotating the impeller connected to the axle at a high speed of the fan motor inside the vacuum cleaner rotating around 30,000-35,000rpm. Despite the fact that many researchers conducted studies on reducing the noise level of the fan motor in a vacuum cleaner, only few studies have been conducted considering both the theoretical and experimental aspects using fluid analysis by measuring vibration and noise. Moreover, there has not been a study that accurately compared major noise data obtained considering both of the aspects. In this study, both aspects were considered by considering the following experimental and theoretical methods to verify the major causes of noise from the fan motor in a vacuum cleaner.

The Analysis of Vibration characteristics for Vacuum Cleaner Fan Motor Using 3-D Laser Vibrator (3차원 레이저 진동 측정기를 이용한 초고속 진공청소기 모터의 진동특성분석)

  • 김재열;김우진;심재기;김영석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.399-405
    • /
    • 2004
  • Recently technology resulted in highly efficient and multiple-functional electric appliances considering environmental problems. One of the environmental problems is noise of a product in respect to its function. A vacuum cleaner is an essential electric appliance in our daily lives. However, severe noise resulted from high motor speed for improving the function of the appliance is a nuisance for the user. This noise is caused by vibration from various parts of the appliance and fluid noise during a series of intake and exhaust processes while rotating the impeller connected to the axle at a high speed of the fan motor inside the vacuum cleaner rotating around 30,000-35,000 rpm. Despite the fact that many researchers conducted studies on reducing the noise level of the fan motor in a vacuum cleaner, only few studies have been conducted considering both the theoretical and experimental aspects using fluid analysis by measuring vibration and noise. Moreover, there has not been a study that accurately compared major noise data obtained considering both of the aspects. In this study, both aspects were considered by considering the following experimental and theoretical methods to verify the major causes of noise from the fan motor in a vacuum cleaner.

  • PDF

Development of Light-Way Lighting Appliance of Specifications for Efficient Construction (효율적 시공을 위한 라이트웨이 조명등기구의 작업지시서 개발)

  • Choi, Chung-Seog;Koh, Jae-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.18-22
    • /
    • 2009
  • In this paper, we are develop specifications light-way lighting appliance for efficient construction. Analyzed wide application and connection regulation. Also, flickering circuit Presented separation, arrangement, mounting instruction. Incandescent lamp occurs much heat. Therefore, establishment of enough electric light interval is required. Voltage of discharge lamp does by below 300v, and provide so that a person is not can may touched.

  • PDF

A study for IT Based Optimal Voltage Control Method of Distribution Systems with Distributed Generation (IT기반 분산전원 연계 배전계통의 최적전압조정에 관한 연구)

  • Kim, Jung-Nyun;Baek, Young-Sik;Seo, Gyu-Seak
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.4
    • /
    • pp.139-143
    • /
    • 2006
  • Recently, standard of living improved and Information-Communication industry developed rapidly. Thereby, interest about electric power quality is rising worldwide. So, research and Development to enhance electric power quality in various viewpoint until most suitable supply system from each kind device to improve electric power quality. And specially, interest about voltage quality is rising by diffusion increase of information communication appliance and minuteness control appliance etc. Also Power consumption is increasing, but expansion of large size generator by environmental and site security problem is difficult. So, introduction of distribution generation is investigated actively by electric-power industry reorganization. Voltage management of power system had been controlled by ULTC (Under Load Tap Changer) in substation and pole transformer on the high voltage distribution line. But, voltage control device on substation and distribution line is applied each other separatively. Therefore, efficiency of line voltage control equipment is dropping. Also, research about introduction upper limit of distribution generation is consisting continuously. This paper presents cooperation use way between voltage control device and introduction upper limit of distribution generation for most suitable voltage control in distribution power system.

Effective Protection Methods of Household Electric Appliances. from Lightning Surges (가정용 전기기구의 효과적인 뇌서지 보호기법)

  • 이복희;강성만;엄주홍;이수봉;길형준;구본완;안창환
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.149-156
    • /
    • 2004
  • This paper deals with the effective protection method for the household electric appliances against lightning surges invading from the Power lines. Direct or induced lightning is the main cause of the breakdown of household electric appliance. The most effective protection method is to install SPDs(surge protective devices) at household electric appliances. If SPDs were not installed at most household electric appliances, it is necessary to install SPDs on the mains. Therefore the propagation aspect and protection methods of lighting surges coming into household electric appliances through the mains was experimentally investigated. The in actual-sized test circuits results of protection method for 8 household electric appliances including computer monitors and TV set could be summarized as follows: The breakdown characteristics of household electric appliances from lightning surges were significantly changed with the their input impedance. Namely, the types of input impedance are classified into infinite, resistive or inductive impedances. Especially, the monitor for computer with inductive input impedance from lightning surges was relatively weak against lightning surges. It was confirmed that the self inductance of branch circuits on the mains have protection effect for household electric appliances against lightning surges invading from the power lines. Also the varistors installed at cabinet panel or circuit-breaker were more effective than multi-tap outlet with varistors. When installed varistors in cabinet panel and multi-tap outlet together, the surge protection effect is much more excellent in technical and economical aspects.

Home Network Control Protocol for Networked Home Appliances and Its Application

  • Lee Jae-Min;Myoung Kwan-Joo;Kim Dong-Sung;Kwon Wook-Hyun;Ko Beom-Seog;Kim Young-Man;Kim Yo-Hee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.1 no.1
    • /
    • pp.26-39
    • /
    • 2002
  • This paper describes design and implementation of home network control protocol for networked home appliances. The proposed network protocol has four-layered protocol structure and device-modem interface structure for the flexibility of modems based on power line communication. The standard message set is specified to guarantee the interoperability between various home appliances The proposed protocol can be easily implemented because it has minimum network overhead.

  • PDF

Electric Load Signature Analysis for Home Energy Monitoring System

  • Lu-Lulu, Lu-Lulu;Park, Sung-Wook;Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.193-197
    • /
    • 2012
  • This paper focuses on identifying which appliance is currently operating by analyzing electrical load signature for home energy monitoring system. The identification framework is comprised of three steps. Firstly, specific appliance features, or signatures, were chosen, which are DC (Duty Cycle), SO (Slope of On-state), VO (Variance of On-state), and ZC (Zero Crossing) by reviewing observations of appliances from 13 houses for 3 days. Five appliances of electrical rice cooker, kimchi-refrigerator, PC, refrigerator, and TV were chosen for the identification with high penetration rate and total operation-time in Korea. Secondly, K-NN and Naive Bayesian classifiers, which are commonly used in many applications, are employed to estimate from which appliance the signatures are obtained. Lastly, one of candidates is selected as final identification result by majority voting. The proposed identification frame showed identification success rate of 94.23%.

Annual Intensities (2016-2017) Analysis of Energy Use and CO2 Emission by End Use based on Measurements of Sample Apartment Units (표본건물 계측에 의한 공동주택 세대에서의 용도별 에너지사용량 및 CO2 배출량 연간 원단위 (2016 - 2017) 분석)

  • Jin, Hye-Sun;Lim, Han-Young;Lee, Soo-Jin;Kim, Sung-Im;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.43-52
    • /
    • 2018
  • In this study, annual site and primary energy use intensities (EUIs) and CO2 emission intensities (CEIs) per area by end use were estimated based on the measurement data from June 2016 to May 2017 of 50 sample apartment units in Seoul. In addition, estimated site EUIs by end use were compared to the U.S. Residential Energy Consumption Survey (RECS) 2009 data. Site EUIs by end use were found to be in the order of heating > electric appliance > domestic hot water > cooking > lighting > cooling > air movement. In the case of primary EUIs and CEIs by end use, electric appliance was found to be the largest. As results of comparison with the RECS 2009 data, it was found that site EUIs were very similar for heating, domestic hot water and electric appliance, etc., but slightly different for cooling. The number of sample apartment units will continue to increase until 2020 (total number of samples 200) and intensities data by end use will be continuously updated through continuous collection of measurement data.

Annual Intensities (2016-2017) Analysis of Energy Use and CO2 Emission by End Use Based on Measurements of Sample Office Building (표본건물 계측에 의한 업무시설에서의 용도별 에너지사용량 및 CO2 배출량 연간 원단위 (2016 - 2017) 분석)

  • Lim, Han-Young;Lim, Su-Hyun;Jin, Hye-Sun;Kim, Sung-Im;Lee, Soo-Jin;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.8
    • /
    • pp.19-27
    • /
    • 2018
  • In this study, annual site and primary energy use intensities (EUIs) and $CO_2$ emission intensities (CEIs) per area by end use were estimated based on the measurement data from June 2016 to May 2017 of 19 sample office buildings in Seoul. In addition, the estimated site EUIs by end use were compared to the U.S. Commercial Buildings Energy Consumption Survey (CBECS) 2012 data. Average site EUIs by end use were found to be in the order of electric appliance (typical floors) > heating > cooling > lighting > air movement > domestic hot water > vertical transportation > city water supply. In the case of primary EUIs and CEIs by end use, electric appliance was found to be the largest. As results of comparison with the CBECS 2012 data, it was found that the site EUIs were similar for heating, cooling, domestic hot water, and electric appliance, etc., but slightly different for lighting and air movement. The number of sample office buildings will continue to increase until 2020 (total number of samples 85) and intensities data by end use will be continuously updated through continuous collection of measurement data.