• Title/Summary/Keyword: Electric Power Reduction System

Search Result 336, Processing Time 0.025 seconds

화력발전소 전기집진기 지능형 분산제어시스템 개발 (Development of intelligent distributed control system of electric precipitator in thermal power plant)

  • 이주현;임익헌;류호선;신만수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.744-747
    • /
    • 2004
  • An electric precipitator in a thermal electric power plant is essential equipment for preventing air environment pollution. However, it is difficult for the existing control systems to make efficient effects on dust collection. This is because AVC and ERC consist of independent, separate systems in the existing systems. To solve this problem, we developed an intelligent distributed control system, which makes optimal control possible through connection operations between the control systems. In this paper, we analyzed system performance and fly ash reduction effects through the developed system structure, development contents and its actual application to power plant.

  • PDF

배터리 충방전특성을 고려한 제주계통의 적정 ESS용량과 탄소배출량 산정에 관한 연구 (A Study on the Evaluation of the ESS Capacity of Considering for Charge-Discharge Characteristic and CO2 Emission in Jeju)

  • 구본희;차준민
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.455-460
    • /
    • 2014
  • South Korea's power consumption is increasing every year. For stable electric power supply, more generation facilities are needed. But it is not easy to build nuclear power generation facilities, so provision of renewable energy is thought of as the solution. For the system's stable management, practical use of energy storing system is needed. Currently, pumping up electric power station is considered most useful. In this study, we have calculated the least amount of energy storing device by considering the renewable energy, HVDC, and change in power for the appliance of ESS in Jeju system, according to The 6th Basic Plan for Long-term Electricity Supply and Demand. Also we have calculated the amount of the battery and about the load equalizing effect to use battery as power storing device. Finally, we have calculated the reduction of electricity generation and the reduction of $CO_2$ emission with this study.

Utility-Connected Solar Power Conditioner Using Edge-Resonant Soft Switching Duty Cycle Sinewave Modulated Inverter Link

  • Ogura, Koki;Chandhaket, Srawouth;Nakaoka, Mutsuo;Terai, Haruo;Sumiyoshi, Shinichiro;Kitaizumi, Takeshi;Omori, Hideki
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.181-188
    • /
    • 2002
  • The utility interfaced sinewave modulation Inverter for the solar photovoltaic power conditioner with a high frequency transformer is presented for residential applications. As compared with the conventional full-bridge hard switching slnewave PWM inverter with a high frequency link, the simplest single-ended edge-resonant soft switching sinewave inverter with a sinewave duty cycle pulse control scheme is implemented, resulting in size and weight reduction, low cost and high efficiency This paper presents a prototype system of the sinewave zero voltage soft switching sinewave inverter for solar power conditioner, along with its operating principle and unique features. In addition to these, this paper discusses a control implementation to deliver high quality output current. Major design of each component and the power loss analysis under actual power processing is also discussed and evaluated from an experimental point of view A newly developed utility-connected sinewave power conditioning circuit which achieves 92.5% efficiency under 4kW output is demonstrated.

10톤급 어선에의 DC 배전 전기 추진 선박 적용 (Application of DC distribution IPS to a 10t Class Fishing Boat)

  • 손영광;최세화;이승용;김소연;설승기
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.353-359
    • /
    • 2017
  • To take advantage of electric propulsion, several large vessel kinds, namely, cruise vessels, icebreakers, drill ships, and warships, have been generally designed with Integrated Power System (IPS). Although most of these vessels have adopted AC distribution IPS, DC distribution IPS ships have recently emerged as a new promising technology thanks to the availability of the products related to the DC distribution system, in which the system's major advantages over AC distribution are reduced weight and fuel consumption. This paper presents the comparison results of a 10-t class fishing boat for the AC distribution and DC distribution cases. By replacing AC distribution system with DC distribution, 31-41% reduction in the weight of the electrical equipment weight and 20-25% reduction in the fuel consumption are expected.

발전기 공급능력 산정 및 예측 기술개발 (Development of Supply Capability Calculation and Prediction Technology for Generator)

  • 김의환;안영모;홍은기
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.425-431
    • /
    • 2016
  • Supply Capability of the generator, if the maximum demand occurs, refers to the maximum power that can be stably supplied and it is possible to maintain stable power supply to be greater than actual load. However, unexpected power demand and reduction in supply Capability due to stop of unexpected generator in operation can temporarily make a big chaos in power system. In fact, due to a lack of power supply Capability in the country, enforced emergency load adjustment to the September 15, 2011, the circulation power outage has occurred in several cities. As the result, interrupted operation of the elevator and stopped hospital medical equipment led to a great deal of trouble to people's lives, causing a social problem. At that time, it was found that a failed frequency control because of smaller actual supply Capability than that of predicted. The difference was about 1,170 MW with Gas turbine power plant. By accurately calculating the generator supply capability, we can not only grasp the power reserve rate, but also correspond to the time of power supply instability.

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.

An Emission-Aware Day-Ahead Power Scheduling System for Internet of Energy

  • Huang, Chenn-Jung;Hu, Kai-Wen;Liu, An-Feng;Chen, Liang-Chun;Chen, Chih-Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.4988-5012
    • /
    • 2019
  • As a subset of the Internet of Things, the Internet of Energy (IoE) is expected to tackle the problems faced by the current smart grid framework. Notably, the conventional day-ahead power scheduling of the smart grid should be redesigned in the IoE architecture to take into consideration the intermittence of scattered renewable generations, large amounts of power consumption data, and the uncertainty of the arrival time of electric vehicles (EVs). Accordingly, a day-ahead power scheduling system for the future IoE is proposed in this research to maximize the usage of distributed renewables and reduce carbon emission caused by the traditional power generation. Meanwhile, flexible charging mechanism of EVs is employed to provide preferred charging options for moving EVs and flatten the load profile simultaneously. The simulation results revealed that the proposed power scheduling mechanism not only achieves emission reduction and balances power load and supply effectively, but also fits each individual EV user's preference.

배전선로의 무정전공법 개발 연구 (A study on the development for the method without interruption of service in the distribution system)

  • 김영래;박구범;송일근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.61-63
    • /
    • 1995
  • The main factors to bring out the power failure are trouble and operation power failure, the operation power failure of these includes about 85%. So, it is required that the without interruption of service method reduce the operation power failure. If we develop the without interruption of service method, the operation power failure will reduce greatly. It is necessary to develop the without interruption of service method which it solve various trobles (dissatisfacting solution of customer, sales revenue augmentation, and the reduction of the power failure negotiation work). The results of study are drawing up of the specification for temporary transmission methods, it of the working methods for them, and the scrutiny of the technology contents for them.

  • PDF

직류전기철도 시스템에 있어서의 변전소 송출전압에 따른 회생전력유효이용 (An Effective Utilization of Regenerative Power According to the Output Voltage of Substations in the DC Electric Railways)

  • Kim, Yang-Mo
    • 대한전기학회논문지
    • /
    • 제39권2호
    • /
    • pp.149-156
    • /
    • 1990
  • In DC electric railway systems, the feeding currrnt is not permitted to flow backward in almost all the substations and the pantograph voltages at the regenerating cars rise extremely by the voltage drop of the resistance of the feeder line. In order to prevent the overrise of the pantograph voltage in power regenerating cars, the squeezing circuits for the regenerative current are equipped and this leads to double losses, which are an extra worn-out of the brake-shoes and an ineffective use of regenerative power. In this study, the insertion of resistors in the feeder line system is proposed as a possible method for the effective utilization of the regenerative power in the electric railways. Also it is investigated how the output voltages of substations affect the effective use of regenertive capability. The investigation results show that the energy savings and the reduction of the worn-out of the brake-shoe can be achieved at the same time by the insertion of resistors in the feeder line system.

  • PDF

도시철도 직류 전력량 계측을 위한 직류용 스마트미터링 시스템 개발 및 성능시험 (Development and Performance Test of DC Smart Metering System for the DC Power Measurement of Urban Railway)

  • 정호성;신승권;김형철;박종영
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.713-718
    • /
    • 2014
  • DC urban railway power system consists of DC power network and AC power network. The DC power network supplies electric power to railway vehicles and the AC power network supplies electric power to station electric equipment. Recently, because of power consumption reduction and peak load shaving, intelligent measurement of regenerative energy and renewable energy adapted on DC urban railway is required. For this reason, DC smart metering system for DC power network shall be developed. Therefore, in this paper, DC voltage sensor, current sensor, and DC smart meter were developed and evaluated by performance test. DC voltage sensor was developed for measuring standard voltage range of DC urban railway, and DC current sensor was developed as hall effect split core type in order to install in existing system. DC smart meter possesses function of general intelligent electric power meter, such as measuring electricity and wireless communication etc. And, DC voltage sensor showed average 0.17% of measuring error for 2,000V/50mA, and current sensor showed average 0.21% of measuring error for ${\pm}2,000V/{\pm}4V$ in performance test. Also DC smart meter showed maximum 0.92% of measuring error for output of voltage sensor and current sensor. In similar environment for real DC power network, measuring error rate was under 0.5%. In conclusion, accuracy of DC smart metering system was confirmed by performance test, and more detailed performance will be verified by further real operation DC urban railway line test.