• Title/Summary/Keyword: Electric Power Generation Industry

Search Result 135, Processing Time 0.033 seconds

Development and Application of Life-Assessment Guidelines for Fossil-Fuel Power Plant Facilities in Korea (한국 화력 발전설비의 수명평가기준 개발 및 활용)

  • Choi, Woo-Sung;Song, Gee-Wook;Kim, Bum-Shin;Hyun, Jung-Seob;Heo, Jae-Sil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1265-1272
    • /
    • 2010
  • In view of the frequent start-ups and load changes in the recent past, there is a need for fossil-fuel power plants to be more efficient and reliable for long-term operation. Under high-temperature and high-pressure conditions, severe creep and fatigue damages can occur in major plant facilities, particularly, turbines and boilers. For highly stable operation and better maintenance, various techniques that facilitate a systematic assessment of the service life of critical facilities have been developed. However, to date, in Korea, to evaluate the remaining life of major facilities of fossil power plant, qualitative or semiquantitative analyses are carried out without following any standard guidelines or procedure. In this study, a standard code for assessing the remaining life of major plant facilities is proposed. This code takes into account creep and fatigue damage, which are generally accepted as dominant causes of damage to facilities. KEPIC (Korea Electric Power Industry code) is scheduled to include this guideline in 2010.

A Study on the Reconfiguration in the Regulation of Electric Safety Management for the Guarantee of Safety (안전성 확보를 위한 전기안전관리기준의 재설정에 관한 연구)

  • Chung, Jae-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.45-49
    • /
    • 2009
  • This study is to prepare a reasonable basis for the improvement of the electrical safety management regulation. The standards in domestic and foreign countries for the application of new and renewable energy facilities and other devices are analyzed. Other regulations excluding the electrical safety fields and wide surveys are also carried out. Consequently, it is asked that the classification between normal and self electrical facilities should be clear and deregulation for small businesses has to be followed. This study is showed that standards investigates of receiving equipment below 600V above 75kW, eletrical safety manager employment of manufacturing industry and Mid-night electric power. And, it is showed that consignment permission and Consignment inspection periodic relaxation about wind development equipment below 1,000kW, consignment of Technical Development equipment for new and renewable energy below 250kW.

Effects of hospital environment using health belief model in environmental management on preventive behaviors through responsiveness and health value (환경경영에서 건강신념모델을 이용한 병원환경이 대응성과 건강가치성을 통해 예방행동에 미치는 영향)

  • Jang, Googhyun;Hwang, Changyu;Song, Youngwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.231-257
    • /
    • 2016
  • Several efforts to replace the use of existing fossil energy resources have already been made around the world. As a result, a new industry of renewable energy has been created, and efficient energy distribution and storage has been promoted intensively. Among the newly explored renewable energy sources, the most widely used one is solar energy generation, which has a high market potential. An energy storage system (ESS) is a system as required. In this paper, the design and implementation of an ESS for the efficient use of power in stand-alone street lights is presented. In current ESS applied to stand-alone street lights, either 12V~24V DC (from solar power) or 110V~220V AC (from commercial power) is used to recharge power in systems with lithium batteries. In this study, an ESS that can support both solar power and commercial power was designed and implemented; it can also perform emergency recharge of portable devices from solar powered street lights. This system can maximize the scalability of ESSes using lithium batteries with efficient energy conversion, with the advantage of being an eco-friendly technology. In a ripple effect, it can also be applied to smart grids, electric vehicles, and new, renewable storage markets where energy storage technology is required.

Survey and Economic Analysis of Food Industry Residues for Biomass-to-energy Conversion in Merced and Stanislaus Counties, California, USA (바이오에너지로의 전환을 위한 캘리포니아 식품가공공장 오.폐수 특성 조사 및 경제성 분석)

  • Kim, Dae-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.243-253
    • /
    • 2009
  • This research expands investigations into the biomass resource potential associated with California's food processing industry by surveying industries within a two county region in the San Joaquin Valley, California, USA. A previous survey conducted in 2005 for the Sacramento Municipal Utility District (SMUD) quantified residue and waste generation from food processors and food preparation businesses in the Sacramento region. The present survey investigates residue and waste streams from food processors located in Merced and Stanislaus Counties. Sixty food processors were identified to participate in the survey, of which 49 responded (82%) and data were acquired for 38 (63%) (6 facilities closed or moved, 8 decided not to participate). Within the two counties, total annual waste among survey respondents amounted to 24,044 dry tons of high moisture (${\geq}$60%) food residuals, 5,358 dry tons of low moisture (<60%) food residuals; and 23.7 million $m^3$ of wastewater containing 38,814 tons of biochemical oxygen demand ($BOD_5$). The total potential electric power generation from these food residues was estimated at approximately $7\;MW_e$. Total solid waste resource included in the survey response was estimated at about 10% of statewide residue generation for processors falling within the Standard Industrial Classification (SIC) System Major Group 20 (Food and Kindred Products) categories.

A Research on the Development of Quality Cost Management System for Power Industry (발전산업의 품질비용 관리체계 구축에 관한 연구)

  • Lee, Myong Chang;Hwang, Bong Sun;Park, Sang Jun;Kim, Min Gyu;Kim, Dong Chun;Shin, Wan Seon
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.4
    • /
    • pp.713-733
    • /
    • 2016
  • Purpose: The primary objective of this case study is to establish a COQ(Cost of Quality) management system for power generation industries. Key topics of this study include collecting COQ elements, their classifications, COQ computation formula, and determining COQ improvement projects. Results: A comprehensive set of COQ elements have been isolated for electric power generation companies. The COQ elements were classified in such a way that they could be managed according to the PAF model as well as the SIPOC diagram. This study showed that a systematic approach could be established for monitoring the COQ elements and using them in the process of improving quality competitiveness. Methods: The PAF(Prevention-Appraisal-Failure) model has been employed in the process of collecting COQ elements for a power generation company. All the cost of quality elements were first examined through an extensive review of articles and books in the field of quality. The cost elements were then refined and augmented by conducting a comparative study with international standards. The COQ elements have been verified by a group of quality managers and classified according to both the PAF model and the SIPOC diagram for better understanding in the entire organization. An improvement strategy has been also proposed by using a typical COQ level of power generation companies. Conclusion: The conventional PAF model was used in establishing a COQ management system for power generation industries. This case study illustrates the procedure about identification, classification and computation of quality costs, including selection of improvement projects. The system can be used not only for observing the current state of cost elements related to quality, but also for planning an improvement strategy using the ratio of cost classification.

A Study on Electricity Generation of Marine Sediment Cells (해양 퇴적토전지의 발전 특성에 대한 연구)

  • Lee, Eun-Mi;Kwon, Sung-Hyun;Rhee, In-Hyoung;Park, Byung-Gi;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.647-653
    • /
    • 2011
  • Sediment cell is renewable energy which produces electric energy using immanent ingredients or reducing power of marine sediment as natural resources. Also the cell has an advantage that environmental pollution can be reduced through conversion of organic and inorganic contaminants into inert matter with generation of the energy. In this paper, we compared characteristics of electricity generation of the two different sediment cells, and investigated the regeneration effect of the sediment cells with manipulation of the sediment such as mixing and re-positioning. The results showed that 14.1 $W/m^2$ of power was obtained with the aluminum electrode, and the mixing of the sediment could increase the power by 4 $W/m^2$ compared to the control. Also, mixing the sediment has kept electricity for 4 weeks at a relatively constant level, which implied 'fuel regeneration effect'. Meanwhile, the sediment cell was proved to be effective in reduction of COD, which was up to 28.6%.

A Modified EGEAS Model with Avoided Cost and the Optimization of Generation Expansion Plan (회피비용을 고려한 EGEAS 모형 개발과 전원개발계획의 최적화)

  • 이재관;홍성의
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.1
    • /
    • pp.117-117
    • /
    • 1992
  • Pubilc utility industries including the electric utility industry are facing a new stream of privatization com-petition with the private sector and deregulation. The necewssity to solve now and in the future power supply and demand problems has been increasing through the sophisticated generation expansion plan(GEP) approach con-sidering not only KEPCo's supply-side resources but also outside resources such as non-utility generation(NUG) demand-side management (DSM). Under the environmental situation in the current electric utility industry a new approach is needed to acquire multiple resources competitively. This study presents the development of a modified electric generation expansion analysis system(EGEAS) model with avoided cost based on the existing EGEAS model which is a dynamic program to develope an optimal generation expansion plan for the electric utility. We are trying to find optimal GEP in Korea's case using our modified model and observe the difference for the level of reliabilities such as the reserve margin(RM) loss of load probability(LOLP) and expected unserved energy percent(EUEP) between the existing EGEAS model and our model. In addition we are trying to calculate avoided cost for NUG resources which is a criterion to evaluate herem and test possibility of connection calculation of avoided cost with GEP implementation using our modified model. The results of our case study are as follows. First we were able to find that the generation expansion plan and reliability measures were largely influenced by capacity size and loading status of NUG resources, Second we were able to find that avoided cost which are criteria to evaluate NUG resources could be calculated by using our modified EGEAS model with avoided cost. We also note that avoided costs were calculated by our model in connection with generation expansion plans.

Study on Theoretical Research to Reduce Fire Risk of Solar Power System (태양광 발전 시스템의 화재 위험 감소 방안에 관한 이론적 연구)

  • Park, Kyong-Jin;Lee, Guen-Cull;Lee, Bong-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.219-224
    • /
    • 2020
  • This study is based on the principle of solar power system and fire breakout. The result of the survey indicates that a solar power system is vulnerable to fire due to lack of maintenance after the installation. Currently the national fire safety agency does not have standards and legal provisions for the installation and maintenance of solar power facilities. Therefore, it increases the risk of fire breakouts as well as possibility of electric shock for the firefighters during fire fighting. This results possible damages to the human and equipments. In this study is proposing an automatic fire extinguishing system to reduce the power generation of solar panels during fire breakouts. Also, propose an over load current alarm system and fire prevention measures for fire fighters. The results of this study will be used as basic data for further fire testing of solar power systems.

Calculation of Photovoltaic, ESS Optimal Capacity and Its Economic Effect Analysis by Considering University Building Power Consumption (대학건물의 전력소비패턴 분석을 통한 태양광, ESS 적정용량 산정 및 경제적 효과 분석)

  • Lee, Hye-Jin;Choi, Jeong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.207-217
    • /
    • 2018
  • Recently, the importance of energy demand management, particularly peak load control, has been increasing due to the policy changes of the Second Energy Basic Plan. Even though the installation of distributed generation systems such as Photovoltaic and energy storage systems (ESS) are encouraged, high initial installation costs make it difficult to expand their supply. In this study, the power consumption of a university building was measured in real time and the measured power consumption data was used to calculate the optimal installation capacity of the Photovoltaic and ESS, respectively. In order to calculate the optimal capacity, it is necessary to analyze the operation methods of the Photovoltaic and ESS while considering the KEPCO electricity billing system, power consumption patterns of the building, installation costs of the Photovoltaic and ESS, estimated savings on electric charges, and life time. In this study, the power consumption of the university building with a daily power consumption of approximately 200kWh and a peak power of approximately 20kW was measured per minute. An economic analysis conducted using these measured data showed that the optimal capacity was approximately 30kW for Photovoltaic and approximately 7kWh for ESS.

A Study on Thermo-flow Characteristics Analysis of Electric Water Pump (전동 워터펌프의 열유동 특성 해석에 관한 연구)

  • Kim, Sung-Chul;Song, Hyeong-Geun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.95-101
    • /
    • 2012
  • An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. The canned type electric water pump without mechanical sealing elements was selected to meet the requirements for operational reliability and life. However, the electric water pump for internal combustion engine generates much more heat loss than for hybrid electric vehicle since it is operated by the electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump as an inverter integrated water pump has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of $125^{\circ}C$, water pump speed of 6000 rpm, coolant temperature of $106^{\circ}C$ and coolant flow rate of 120 L/min was used as a standard condition. Therefore, flow fields and temperature distribution inside the water pump were obtained. Also, we checked the feasibility of the canned type for the electric water pump in comparison with the mechanical seal type.