• Title/Summary/Keyword: Electric Power Equipment

Search Result 792, Processing Time 0.028 seconds

Reliability-Centered Maintenance Model for Maintenance of Electric Power Distribution System Equipment (배전계통 기기 유지보수를 위한 RCM 모델)

  • Moon, Jong-Fil;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.410-415
    • /
    • 2009
  • With the implementation of electric power industry reform, the utilities are looking for effective ways to improve the economic efficiency. One area in particular, the equipment maintenance, is being scrutinized for reducing costs while keeping a reasonable level of the reliability in the overall system. Here the conventional RCM requires the tradeoff between the upfront maintenance costs and the potential costs of losing loads. In this paper we describe the issues related to applying so-called the "Reliability-centered Maintenance" (RCM) method in managing electric power distribution equipment. The RCM method is especially useful as it explicitly incorporates the cost-tradeoff of interest, i.e. the upfront maintenance costs and the potential interruption costs, in determining which equipment to be maintained and how often. In comparison, the "Time-based Maintenance" (TBM) method, the traditional method widely used, only takes the lifetime of equipment into consideration. In this paper, the modified Markov model for maintenance is developed. First, the existing Markov model for maintenance is explained and analyzed about transformer and circuit breaker, so on. Second, developed model is introduced and described. This model has two different points compared with existing model: TVFR and nonlinear customer interruption cost (CIC). That is, normal stage at the middle of bathtub curve has not CFR but the gradual increasing failure rate and the unit cost of CIC is increasing as the interruption time is increasing. The results of case studies represent the optimal maintenance interval to maintain the equipment with minimum costs. A numerical example is presented for illustration purposes.

Development of Power Performance Evaluation System using Modeling Technology (설비 모델링 기술을 이용한 발전성능평가 시스템 구성방안 연구)

  • Lee, Ji-Hoon;Lee, In-tae;Jung, Nam-Joon;Bae, Jung-Seok;An, Young-Mo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.81-88
    • /
    • 2018
  • Performance evaluation of a plant to efficiently manage and maintain the performance of the plant is a very important procedure. However, since the conventional performance evaluation method is an Excel-based manual method, the preparation procedure is complicated and the versatility is poor. In this paper, we analyze the problems of the existing performance evaluation system, effectively model the equipment, calculate the missing physical properties, and improve the versatility, efficiency and accuracy of the performance evaluation through the equipment modeler which performs automatic index calculation based on this.

Installation and Test Run of Comprehensive Analysis System for SF6 in Power Equipment

  • Lee, Jeong Eun;Kim, Kwang Sin;Kim, Ah Reum;Park, Seoksoon;Kim, Kyeongsook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • After $SF_6$, which is being used in power equipment as an insulating material, is classified as one of the 6 major greenhouse gases, the maintenance and the refinement of used $SF_6$ started to get attention. In regard to this, KEPCO Research Institute (KEPRI) is developing $SF_6$ recovery and refinement technology starting with establishing a comprehensive $SF_6$ analysis system. With the analysis system, qualitative and quantitative analyses of the purity and the impurities of $SF_6$ before and after recovery, and before and after refinement have been carried out. The analysis system is comprised of GC-DID (Gas Chromatograph -Discharge Ionization Detector) for trace impurities analysis, GC-TCD (Thermal Conductivity Detector) for analyses of $SF_6$ purity and major impurities concentration from several hundred ppm up to percent range, GC-MSD (Mass Selective Detector) for analyses of impurities not included in standard gas, FT-IR (Fourier Transform-Infrared) Spectrometer for analysis of HF and $SO_2$, and moisture analyzer for analysis of moisture below 100 ppm. With this analysis system, complete analysis method of $SF_6$ has been established. This analysis system is being used in the maintenance of power equipment and the development of $SF_6$ recovery and refinement technologies. In this paper, the analysis results of four samples - gas and liquid phase $SF_6$ samples from a $SF_6$ refinement system before and after refinement are presented.

Effects of sheds and cemented joints on seismic modelling of cylindrical porcelain electrical equipment in substations

  • Li, Sheng;Tsang, Hing-Ho;Cheng, Yongfeng;Lu, Zhicheng
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.55-65
    • /
    • 2017
  • Earthquake resilience of substations is essential for reliable and sustainable service of electrical grids. The majority of substation equipment consists of cylindrical porcelain components, which are vulnerable to earthquake shakings due to the brittleness of porcelain material. Failure of porcelain equipment has been repeatedly observed in recent earthquakes. Hence, proper seismic modelling of porcelain equipment is important for various limit state checks in both product manufacturing stage and detailed substation design stage. Sheds on porcelain core and cemented joint between porcelain component and metal cap have significant effects on the dynamic properties of the equipment, however, such effects have not been adequately parameterized in existing design guidelines. This paper addresses this critical issue by developing a method for taking these two effects into account in seismic modelling based on numerical and analytical approaches. Equations for estimating the effects of sheds and cemented joint on flexural stiffness are derived, respectively, by regression analyses based on the results of 12 pieces of full-scale equipment in 500kV class or higher. The proposed modelling technique has further been validated by shaking table tests.

Electric power system effect investigation of large size digital signal accident thought in digital age (디지털시대의 대형사고의 전기적 영향 고찰)

  • Kang, Tae-Keun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.575-580
    • /
    • 2004
  • The latest equipment automatic Intelligence of digital base done large size equipment appear in succession. That run by voltage electric current(mA, mV, ${\mu}A,\;{\mu}V$) that outline is microscopic of action of accuracy large size equipment of this digital base is bulk. Have received influence that is great in river electric field by installment that use computer. Most of domestic working voltage from service entrance extra-high voltage and working voltage of commercial frequency 60Hz working voltage 220V that use our country outside 1 country in interior of 22.900V for semiconductor use computer use digital installment of appliance as well as various smalls of digital base, middle, large size that safety is these fine voltage electric current that is not enough direct admonition hundred vast damage give can. Also, already act in surge circle and impulse transient phenomena such as several thousands, myriads, strong bit error more than billions time to digital fine electronic circuit by mistake use of using electric facility system of system electric power.

  • PDF

Nonchange of Grounding Current due to Equipment Measuring Insulation Resistance (절연저항 측정 장치에 의한 지락사고 전류의 비변화)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • With progress in industrialization, facilities for generating, delivering, and receiving high levels of electric power are in great demand. The scale of electric power equipment is increasing in both size and complexity. This has contributed to the development of our modern, high-tech and information-based society. However, if the generation of electric power is suspended due to unexpected accidents at power facilities or power stations, a range of equipment the operations of which are dependent on electric power can be damaged, causing substantial socioeconomic losses in an industrial society. A great deal of time and money would be expended to repair damaged facilities at a power station, causing enormous economic loss.In order to detect the deterioration processes of power cables, and to prevent the destruction of power cables, the operation status of power cables should be monitored on a regular basis. We have installed equipment at Korea Western Power Co., Ltd., located in Taean, in order to predict and prevent the destruction of power cables. This is an entirely new installation: a set of equipment invented specifically to measure the insulation resistance of power cables. Installation of the equipment does not cause the flow of earth fault current. This ensures accurate measurement of insulation resistance values by the equipment. We have been studying this equipment in order to develop preventive technology that would show the deterioration processes of power cables.

The Measurement of Electromagnetic Wave in Power Cable Tunnel of Underground Utility Tunnel (전력구 내 전자기파에 대한 작업 환경 측정)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Electromagnetic measurements of the power cable tunnel were conducted from August 10 to 20, 2018, in the ${\bigcirc}{\bigcirc}$ city underground utility tunnel. During this period, the average temperature was $31.89^{\circ}C$ and the humidity was 67.56% in power cable tunnel. As a result of the electromagnetic measurement, the highest electric field was 25.3 V/m and the magnetic flux density was $42.6{\mu}T$. The average electric field was 18.56 V/m and the magnetic flux density was $29.32{\mu}T$ in the power cable tunnel. As a result of comparison with the electric equipment technical standard, the electric field in the power cable tunnel was 0.5% of the electric equipment standard and 35.2% of the magnetic flux density. It's similar value that electric field is about robotic vacuum(15.53 V/m), and magnetic flux density is similar value about capsule- type coffee machine ($23.07{\mu}T$). The number of cable lines and the size of the electromagnetic waves were not proportional to each other through comparison of cable lines in the power cable tunnel. It was confirmed that 154 kV, rather than 22.9 kV, could have a greater influence on occupational.

Negative Corona Onset Characteristic of the UHV Conductors Based on the Corona Cage

  • Liu, Yun-Peng;Zhu, Lei;Lv, Fang-Cheng;Xie, Xiongjie
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2089-2097
    • /
    • 2014
  • Negative corona onset characteristics of the stranded conductors based on the ultra-high voltage (UHV) corona cage were studied in the paper. Based on the corona self-sustaining criterion in extreme uneven electric fields and the secondary emission process of the photoelectrons, the corona onset calculation model in the UHV corona cage is established and the corona current tests of the single LGJ900-75, 6 bundle LGJ900-75, 8 bundle LGJ400-35 conductors in dry and rain conditions were done in the UHV corona cage, and the rain rates are 2.4 mm/h, 20 mm/h and 30 mm/h. Corona onset electric field strength is gained by E-I tangent method, and the onset electric field strength in dry condition proves that the calculation model can be used to calculate the corona onset characteristics of the bundle conductors in the UHV corona cage. A further analysis proves that: the negative corona onset voltage of the conductor increases with the bundle number and the diameter of the sub conductor, but decreases with the bundle space in the corona cage. The onset electric field strength is influenced little by bundle space and bundle number, but decreases with the increase of the diameter of the sub-conductor. The surface irregularity coefficient decreases with the rain rate.

A Study of Traction Power System Reliability (철도 급전시스템 신뢰도 평가 연구)

  • Kim Hyungchul;Cha Jun-Min;Kim Jin-O;Han Moonseob
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.806-812
    • /
    • 2005
  • This paper proposes a new reliability evaluation for traction power system. The electric railway consists of traction power systems, various vehicles, operating equipment, track, overhead line and electric equipment. It is a fundamental function of traction power systems that supply customers with reasonable price, acceptable reliability and high quality power. In a general way, the power system reliability deals with the ability to satisfy load demands in supply capability or rating of every factor. On the other hand, the reliability of traction power systems has been focused on train time delay caused by power outage. In this paper, we make a selection optimum reliability indices for the reliability evaluation of electric traction power systems. The reliability study not only applies a plan for traction supply system after detecting the vulnerable point of existing traction supply systems but also makes a role in stable operating railway.

  • PDF

Development of Equipment Measuring Insulation Resistance of High-Power Cables in Operation at Power Station (발전소에서 운전 중인 고전력 케이블의 절연저항의 변화를 감시하는 장치의 개발)

  • Um, Kee-Hong;Kim, Bo-Kyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.159-164
    • /
    • 2016
  • In or to generate high electric power in increasing demand, power station should operate facilities to meet requirement. The scale of electric power equipment is increasing in both size and complexity. With unexpected accidents at power facilities or power stations happening, substantial socioeconomic losses in an industrial society is caused. A major cause of unexpected accidents is deterioration of dielectrics, isolating two conductors electrically. In order to detect the deterioration processes of power cables, the operation status of power cables should be monitored on a regular basis. We have invented and installed equipment at Korea Western Power Co., Ltd., located in Taean, in order to predict and prevent the deterioration status of dielectrics destruction of power cables. The main line in Y-connection to the secondary coils of transformer delivers electric power to the external devices. The equipment we developed is the one measuring insulation resistance of cables operation in on/off status with respect to the main line. We present the equipment in terms of operation and configuration of hardware side.