• Title/Summary/Keyword: Electric Machinery Control

Search Result 118, Processing Time 0.027 seconds

The research of Voltage Source PWM Converter for an elevator (엘리베이터용 전압형 PWM 입력 변환기에 대한 연구)

  • Kim, Byoung-Hya;Park, Sang-Young;Seo, Myung-Seok;Han, Gueon-Sang;Chung, Yoo-Chul;Lee, Jung-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.246-248
    • /
    • 1994
  • This paper describes a bidirectional Voltage Source PWM Converter for an elevator. From the study of boost rectifier, the control circuit desisted by full digital DSP technique. The characteristic of control circuit is that implements of space-vector PWM method and has feedback loop of DC side load current which reduce DC voltage flucturation.

  • PDF

A Performance Test Equipment for Rechargeable Electric Tools

  • Lee, Jong-Kwang;Lim, Hyo-Jae;Park, Min-Kyu;Koh, Jin-Ha;Lee, Kyu-Won;Kang, E-Sock
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.68.5-68
    • /
    • 2002
  • For the performance test of rechargeable electric tools, it is necessary to test under the same condition as the actual operation condition. They are necessary to control the load torque and to acquire the test data with a computer, and it should be convenient to fix the tool on the test equipment for rechargeable electric tools. It consists of torque loading parts, sensing parts and control software. Two hysteresis brakes, connected serially with flexible coupling, were applied to control the load for the test. The sensing part consists of a torque sensor, a rpm detector and a power analyzer. The torque and the rpm were measured in order to calculate the output of the rechargeable electric...

  • PDF

Development of Super-capacitor Battery Charger System based on Photovoltaic Module for Agricultural Electric Carriers

  • Kang, Eonuck;Pratama, Pandu Sandi;Byun, Jaeyoung;Supeno, Destiani;Chung, Sungwon;Choi, Wonsik
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • Purpose: In this study, a maintenance free super-capacitor battery charging system based on the photovoltaic module, to be used in agricultural electric carriers, was developed and its charging characteristics were studied in detail. Methods: At first, the electric carrier system configuration is introduced and the electric control components are presented. The super-capacitor batteries and photovoltaic module used in the experiment are specified. Next, the developed charging system consisting of a constant current / constant voltage Buck converter as the charging device and a super-capacitor cell as a balancing device are initiated. The proposed circuit design, a developed PCB layout of each device and a proportional control to check the current and voltage during the charging process are outlined. An experiment was carried out using a developed prototype to clarify the effectiveness of the proposed system. A power analyzer was used to measure the current and voltage during charging to evaluate the efficiency of the energy storage device. Finally, the conclusions of this research are presented. Results: The experimental results show that the proposed system successfully controls the charging current and balances the battery voltage. The maximum voltage of the super-capacitor battery obtained by using the proposed battery charger is 16.2 V, and the maximum charging current is 20 A. It was found that the charging time was less than an hour through the duty ratio of 95% or more. Conclusions: The developed battery charging system was successfully implemented on the agricultural electric carriers.

A Study on the Power Line Control System for Electric Machinery using Power Line Communication (전력선 반송통신을 이용한 전기기기 전원 제어 시스템에 관한 연구)

  • 김경엽;문복산;김영일;서인호;천행춘;강대기;유영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.115-122
    • /
    • 2000
  • Recently, a study on the Power Line Communication has been done by many companies and institutes due to its own merits that we can use the power line as a communication channel. But, there are serious problems about the harsh and unpredictable characteristics - noise, signal distortion and attenuation to be overcome in order that we commercialize the Power Line Communication. In this paper, we analyse the power line characteristics and apply the technology of PLC to control power of electric machinery by using ASK modulation.

  • PDF

The Study on the generating systems in paralleled with utility (계통 병렬운전용 발전 SYSTEM 고찰)

  • Kim, Bang-Kwang;Kim, Kwang-Suk;Kim, Dong-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1084-1087
    • /
    • 1993
  • The importance of reliable electric power has increased rapidly with the proliferation of sophisticated communication systems, computers and critical surgical operations and it considered as one of the most important issues which must be reflected on initial engineering for construction. In this connection, this paper describes the basic conception of peak shaving and cogeneration which are widely used to control the electric power supply recently.

  • PDF

Utilization Efficiencies of Electric Energy and Photosynthetically Active Radiation of Lettuce Grown under Red LED, Blue LED and Fluorescent Lamps with Different Photoperiods

  • Lee, Hye In;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • Purpose: This study was conducted to analyze the utilization efficiencies of electric energy and photosynthetically active radiation of lettuce grown under red LED, blue LED and fluorescent lamps with different photoperiods. Methods: Red LED with peak wavelength of 660 nm and blue LED with peak wavelength of 450 nm were used to analyze the effect of three levels of photoperiod (12/12 h, 16/8 h, 20/4 h) of LED illumination on light utilization efficiency of lettuce grown hydroponically in a closed plant production system (CPPS). Cool-white fluorescent lamps (FL) were used as the control. Photosynthetic photon flux, air temperature and relative humidity in CPPS were maintained at 230 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $22/18^{\circ}C$ (light/darkness), and 70%, respectively. Electric conductivity and pH were controlled at 1.5-1.8 $dS{\cdot}m^{-1}$ and 5.5-6.0, respectively. The light utilization efficiency based on the chemical energy converted by photosynthesis, the accumulated electric energy consumed by artificial lighting sources, and the accumulated photosynthetically active radiation illuminated from artificial lighting sources were calculated. Results: As compared to the control, we found that the accumulated electric energy consumption decreased by 75.6% for red LED and by 70.7% for blue LED. The accumulated photosynthetically active radiation illuminated from red LED and blue LED decreased by 43.8% and 33.5%, respectively, compared with the control. The electric energy utilization efficiency (EEUE) of lettuce at growth stage 2 was 1.29-2.06% for red LED, 0.76-1.53% for blue LED, and 0.25-0.41% for FL. The photosynthetically active radiation utilization efficiency (PARUE) of lettuce was 6.25-9.95% for red LED, 3.75-7.49% for blue LED, and 2.77-4.62% for FL. EEUE and PARUE significantly increased with the increasing light period. Conclusions: From these results, illumination time of 16-20 h in a day was proposed to improve the light utilization efficiency of lettuce grown in a plant factory.

A Two-Dimensional Study of Transonic Flow Characteristics in Steam Control Valve for Power Plant

  • Yonezawa, Koichi;Terachi, Yoshinori;Nakajima, Toru;Tsujimoto, Yoshinobu;Tezuka, Kenichi;Mori, Michitsugu;Morita, Ryo;Inada, Fumio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • A steam control valve is used to control the flow from the steam generator to the steam turbine in thermal and nuclear power plants. During startup and shutdown of the plant, the steam control valve is operated under a partial flow conditions. In such conditions, the valve opening is small and the pressure deference across the valve is large. As a result, the flow downstream of the valve is composed of separated unsteady transonic jets. Such flow patterns often cause undesirable large unsteady fluid force on the valve head and downstream pipe system. In the present study, various flow patterns are investigated in order to understand the characteristics of the unsteady flow around the valve. Experiments are carried out with simplified two-dimensional valve models. Two-dimensional unsteady flow simulations are conducted in order to understand the experimental results in detail. Scale effects on the flow characteristics are also examined. Results show three types of oscillating flow pattern and three types of static flow patterns.

Development of 200kW class electric vehicle traction motor driver based on SiC MOSFET (SiC MOSFET기반 200kW급 전기차 구동용 모터드라이버 개발)

  • Yeonwoo, Kim;Sehwan, Kim;Minjae, Kim;Uihyung, Yi;Sungwon, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.671-680
    • /
    • 2022
  • In this paper, A 200kW traction motor driver that covers most of the traction motor specification of commercial electric vehicles (EV) is developed. In order to achieve high efficiency and high power density, a next-generation power semiconductors (Silicon carbide, SiC) are applied instead of power semiconductor(IGBT), which is Si based. Through hardware analysis for optimal use of SiC, expected efficiency and heat dissipation characteristics are obtained. A vector control algorithm for an IPMSM (Interior permanent magnet synchronous motor), which is mostly used in EV(Electric vehicle) traction motor, is implemented using DSP (Digital signal processor). In this paper, a prototype traction motor driver based SiC for EV is designed and manufactured, and its performance is verified through experiments.

Application of Intake Throttling for Improving Regeneration Characteristics of an Electrical Heated DPE System (소형디젤엔진용 전기히터방식 매연여과장치의 재생특성 향상을 위한 흡기드로틀링 적용연구)

  • Kim Hongsuk;Han Hanseung;Kim Jinhyun;Cho Gyubaek;Jeong Youngil;Hwang Jae-Won;Han Sangmyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.77-83
    • /
    • 2005
  • Application of an electric heater is one of attractive methods for active regeneration in DPF systems, but its application has been limited by the capacity of electric power available in vehicles. This study was focused on intake throttling to reduce electrical energy required in the electrical heated DPF system. As results, this study showed the decrease of $30\~50\%$ of intake air mass flow rate and the increase of $20\~60^{\circ}C$ of exhaust gas temperature by the proper control of intake throttling. These intake throttling effects was helpful for regenerable temperature achievement.

Development of a Simulation Model for an 80 kW-class Electric All-Wheel-Drive (AWD) Tractor using Agricultural Workload (농작업 부하 데이터를 활용한 80 kW급 전기구동 AWD 트랙터의 시뮬레이션 모델 개발)

  • Baek, Seung Yun;Kim, Wan Soo;Kim, Yeon Soo;Kim, Yong Joo;Park, Cheol Gyu;An, Su Cheol;Moon, Hee Chang;Kim, Bong Sang
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The aim of this study is to design a simulation model for an electric All-Wheel-Drive (AWD) tractor to evaluate the performance of the selected component and agricultural work ability. The electric AWD tractor consists of four motors independently for each drive wheel, and each motor is combined with an engine generator, a battery pack, and reducers. The torque data of a 78 kW-class tractor was measured during plow tillage and driving operation to develop a workload cycle. A simulation model was developed by using commercial software, Simulation X, and it used the workload as the simulation condition. As a result of simulation analysis, the drive system, including an electric motor and reducers, was able to cope with high load during plow tillage. The SOC (State of Charge) level was influenced by the output power of the motor, and it was maintained in the range of 50~80%. The fuel consumed by the engine was about 18.23 L during working on a total of 8 fields. The electric AWD tractor was able to perform agricultural work for about 7 hours. In the future study, the electric AWD tractor will be developed reflecting the simulation condition. Research on the comparison between the simulation model and the electric AWD tractor should be performed.