DOI QR코드

DOI QR Code

Development of 200kW class electric vehicle traction motor driver based on SiC MOSFET

SiC MOSFET기반 200kW급 전기차 구동용 모터드라이버 개발

  • Yeonwoo, Kim (Korea Institute of Machinery & Materials) ;
  • Sehwan, Kim (Korea Institute of Machinery & Materials) ;
  • Minjae, Kim (Korea Institute of Machinery & Materials) ;
  • Uihyung, Yi (Korea Institute of Machinery & Materials) ;
  • Sungwon, Lee (Korea Institute of Machinery & Materials)
  • Received : 2022.12.07
  • Accepted : 2022.12.20
  • Published : 2022.12.31

Abstract

In this paper, A 200kW traction motor driver that covers most of the traction motor specification of commercial electric vehicles (EV) is developed. In order to achieve high efficiency and high power density, a next-generation power semiconductors (Silicon carbide, SiC) are applied instead of power semiconductor(IGBT), which is Si based. Through hardware analysis for optimal use of SiC, expected efficiency and heat dissipation characteristics are obtained. A vector control algorithm for an IPMSM (Interior permanent magnet synchronous motor), which is mostly used in EV(Electric vehicle) traction motor, is implemented using DSP (Digital signal processor). In this paper, a prototype traction motor driver based SiC for EV is designed and manufactured, and its performance is verified through experiments.

본 논문에서는 현재 출시되어 있는 전기차의 구동모터 사양을 대부분 포괄하는 200kW급 구동용 모터드라이버를 개발하였다. 고효율ㆍ고전력밀도를 달성하기 위해 기존 전력반도체(Insulated-gate bipolar transistor, IGBT)대신에 차세대 전력반도체(Silicon carbide, SiC)를 적용하였으며 SiC를 최적사용하기 위해 하드웨어에 대한 분석을 통해, 예상되는 효율 및 방열특성을 구하여 최적 설계를 하였다. 전기차 구동모터에 대부분 활용되는 매입형 영구자석 동기모터(Interior permanent-magnet synchronous machine, IPMSM)를 위한 벡터 제어 알고리즘을 DSP를 활용하여 구현하였다. 본 논문에서는 SiC기반 전기차 구동용 모터드라이버 시작품을 설계ㆍ제작하였으며 실험을 통해 성능을 검증하였다.

Keywords

Acknowledgement

This research was supported by a grant of the Basic Research Program funded by the Korea Institute of Machinery and Materials(grant number: NK240A).

References

  1. F. Blaabjerg, H. Wang, I. Vernica, B. Liu and P. Davari, "Reliability of Power Electronic Systems for EV/HEV Applications," in Proceedings of the IEEE, vol.109, no.6, pp.1060-1076, 2021. DOI: 10.1109/JPROC.2020.3031041.
  2. Y. Y. Choi, E. S. Han, C. S. Lee, "Development Process and Technology Trend of Permanent Magnet Motor System for Electric Vehicle," in Journal of the Korean. mag. society, vol.31, no.3, pp.97-108, 2021.
  3. U.S. DRIVE DoE, "Electrical and electronics technical team roadmap,"
  4. H. J. Kim, J. Y. Park, S. J. Kim, R. M. Hakim, H. K. Phuc, S. W. Choi, "A 11 kW 5.58 kW/L Electrolytic Capacitor-less EV Charger With Singleand Three-Phase Compatibility," in Trans. Korean Inst. Power Electron, vol.26, no.4, pp.277-284, 2021. DOI: 10.6113/TKPE.2021.26.4.277
  5. ROHM semiconductor, "SiC Application Note : SiC Power Devices and Modules," ROHM semiconductor, Application Note 14103EBY01,
  6. M. Chinthavali, P. Otaduy, and B. Ozpineci, "Comparison of Si and SiC inverters for IPM traction drive," in Proc. IEEE Energy Convers. Congr. Expo., pp.3360-3365, 2010. DOI: 10.1109/ECCE.2010.5618319
  7. S. Jahdi, O. Alatise, C. Fisher, L. Ran, and P. Mawby, "An evaluation of silicon carbide unipolar technologies for electric vehicle drive-trains," IEEE J. Emerg. Sel. Topics Power Electron., vol.2, no.3, pp.517-528, 2014. DOI: 10.1109/JESTPE.2014.2307492
  8. A. M. S. Al-bayati, S. S. Alharbi, S. S. Alharbi and M. Matin, "A comparative design and performance study of a non-isolated DC-DC buck converter based on Si-MOSFET/Si-Diode, SiC-JFET/ SiC-schottky diode, and GaN-transist or/SiC-Schottky diode power devices," 2017 North American Power Symposium (NAPS), pp.1-6, 2017. DOI: 10.1109/NAPS.2017.8107192.
  9. X. Liu, H. Chen, J. Zhao and A. Belahcen, "Research on the Performances and Parameters of Interior PMSM Used for Electric Vehicles," in IEEE Transactions on Industrial Electronics, vol.63, no.6, pp.3533-3545, 2016. DOI: 10.1109/TIE.2016.2524415.
  10. A. Chiba et al., "Torque Density and Efficiency Improvements of a Switched Reluctance Motor Without Rare-Earth Material for Hybrid Vehicles," in IEEE Transactions on Industry Applications, vol.47, no.3, pp.1240-1246, 2011. DOI: 10.1109/TIA.2011.2125770.
  11. S. Kim and J. -K. Seok, "Wide-speed direct torque and flux control of torque-controlled IPMSM drives," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp.3993-3999, 2012. DOI: 10.1109/ECCE.2012.6342157.
  12. K. C. Kim, "Trend and Issue of Traction Motor Technology for Electric Vehicle," Auto Journal, 2017.
  13. Z. Yang, F. Shang, I. P. Brown and M. Krishnamurthy, "Comparative Study of Interior  Permanent Magnet, Induction, and Switched Reluctance Motor Drives for EV and HEV Applications," in IEEE Transactions on Transportation Electrification, vol.1, no.3, pp.245-254, 2015. DOI: 10.1109/TTE.2015.2470092.
  14. J. W. Park, D. H. Koo, J. M. Kim, H. G. Kim, "Development of a Interior Permanent Magnet Synchronous Motor and Driver for 2-Motor Driven Electric Vehicle," Power electronics annual conference, pp.305-308, 1998. DOI: 10.1109/PEDES.1998.1330720
  15. G. Berardi, S. Nategh, N. Bianchi and Y. Thioliere, "A Comparison Between Random and Hairpin Winding in E-mobility Applications," IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, pp.815-820, 2020. DOI: 10.1109/IECON43393.2020.9255269.
  16. CASCADIA MOTION, "SS-250 Gen2 Single stack datasheet," 2022. https://cascadiamotion.com /productlist/15-motors/10-cm-motors/8-ss-250
  17. N. S. Bristy, S. Mustary, R. Hasan and A. Das, "Minority carrier lifetime dependence into switching power loss calculation of IGBT," 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp.79-82, 2017. DOI: 10.1109/ECACE.2017.7912883.
  18. Y. Takatsuka, H. Hara, K. Yamada, A. Maemura and T. Kume, "A wide speed range high efficiency EV drive system using winding changeover technique and SiC devices," 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), pp.1898-1903, 2014. DOI: 10.1109/IPEC.2014.6869844.
  19. ROHM semiconductor, "SiC Power Devices and Modules Application Note," 2013.
  20. Y. Wu, S. Yin, H. Li, M. Dong, "Modeling and Experimental Investigation of Electromagnetic Interference (EMI) for SiC-Based Motor Drive," Energies (Multidisciplinary Digital Publishing Institute), Vol.13, No.19, pp.5173, 2020. DOI: 10.3390/en13195173
  21. E. S. Glitz and M. Ordonez, "MOSFET Power Loss Estimation in LLC Resonant Converters: Time Interval Analysis," in IEEE Transactions on Power Electronics, vol.34, no.12, pp.11964-11980, 2019. DOI: 10.1109/TPEL.2019.2909903.
  22. F. L. Luo and H. Ye, "Small Signal Analysis of Energy Factor and Mathematical Modeling for Power DC-DC Converters," in IEEE Transactions on Power Electronics, vol.22, no.1, pp.69-79, 2007. DOI: 10.1109/TPEL.2006.886652.
  23. A. Nisch, C. Kloeffer, J. Weigold, W. Wondrak, C. Schweikert and L. Beaurenaut, "Effects of a SiC TMOSFET Tractions Inverters on the Electric Vehicle Drivetrain," PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp.1-8, 2018