• Title/Summary/Keyword: Electric Load Analysis Optimization Method

Search Result 13, Processing Time 0.023 seconds

A study on optimizing the electrical load analysis for modifying the avionics equipment in an aged aircraft

  • Yoon, Inbok;An, Kyeongsoo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.47-56
    • /
    • 2021
  • In the management of aged aircraft, used avionics equipment is replaced with new ones to improve the performance and extend the life cycle of the aircraft. In this case, considering airworthiness, it is necessary to check whether the aircraft has sufficient electricity in the electric generator or the electrical distribution system, in accordance with the maximum electricity consumption of the new avionics equipment. Accordingly, this paper reviews a few airworthiness standards and guidelines associated with the electrical load analysis when an avionics equipment is upgraded in an aged aircraft, and proposes an optimization method for the electrical load analysis. In addition, it verifies the validity of the proposed method via the QFD theory, and is currently available for upgrading the performance of aged aircraft.

Development of Optimization Logic for Electric Vehicle with Multiple Axle Power System Based on Vehicle Dynamics (차량 동역학 기반 다축 동력 전기 차량의 부하 최적화 로직 개발)

  • Jeong, Jongryeol;Shin, Changwoo;Lim, Wonsik;Cha, Suk Won;Jang, Myeong Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.8-15
    • /
    • 2013
  • Recently many kinds of electric vehicles have been developed as many governments demand the environmental friendly vehicles. In this paper, study of load optimization for the electric vehicle which has multiple axle power system was conducted. For the analysis of the vehicle which has three or four driving axles, a method based on the geometry and assumptions that considering axles as a spring model and normal forces of the axles are proportional to the displacement of the axles was applied with basic vehicle dynamics. With the developed vehicle analysis technique, algorithm to find the optimal motor operating points was developed. Using this algorithm, it was possible to find the optimization of vehicle load distribution for multiple axles according to the driving cycles. Also, control logic for the vehicle can be developed based on the optimization simulation results.

Stator Shape Optimization for Electrical Motor Torque Density Improvement

  • Kim, Hae-Joong;Kim, Youn Hwan;Moon, Jae-Won
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.570-576
    • /
    • 2016
  • The shape optimization of the stator and the rotor is important for electrical motor design. Among many motor design parameters, the stator tooth and yoke width are a few of the determinants of noload back-EMF and load torque. In this study, we proposed an equivalent magnetic circuit of motor stator for efficient stator tooth and yoke width shape optimization. Using the proposed equivalent magnetic circuit, we found the optimal tooth and yoke width for minimal magnetic resistance. To verify if load torque is truly maximized for the optimal tooth and yoke width indicated by the proposed method, we performed finite element analysis (FEA) to calculate load torque for different tooth and yoke widths. From the study, we confirmed reliability and usability of the proposed equivalent magnetic circuit.

Set up a Demand Factor of EV Chargers and Its Control Method in Apartments (공동주택에서의 전기자동차 충전기 수용률 설정과 그 제어방법)

  • Kim, Myeong-Soo;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.98-105
    • /
    • 2014
  • In this paper, we have analyzed the power consumption property of EVs(Electric Vehicles) chargers established in a public place, proposed reasonable demand factors by the number of established EV chargers and its control method in apartments. The optimization of power system and the suppression of the peak load can be controlled through the proposed demand factors and charging scheduling control algorithm. In this paper, electrical design and an case analysis were carried out on a sample apartment complex to prove the effectiveness of the power system. As a result, emergency power transformer capacity has been reduced by approximately 25%, and we have confirmed that the electric rates saving and the control of peak load value is possible.

A Game Theory Based Interaction Strategy between Residential Users and an Electric Company

  • Wang, Jidong;Fang, Kaijie;Yang, Yuhao;Shi, Yingchen;Xu, Daoqiang;Zhao, Shuangshuang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 2018
  • With the development of smart grid technology, it has become a hotspot to increase benefits of both residential users and electric power companies through demand response technology and interactive technology. In this paper, the game theory is introduced to the interaction between residential users and an electric company, making a mutually beneficial situation for the two. This paper solves the problem of electricity pricing and load shifting in the interactive behavior by building the game-theoretic process, proposing the interaction strategy and doing the optimization. In the simulation results, the residential users decrease their cost by 11% mainly through shifting the thermal loads and the electric company improves its benefits by 5.6% though electricity pricing. Simulation analysis verifies the validity of the proposed method and shows great revenue for the economy of both sides.

Developing electric railway load pattern inspection program and optimizing power rate (전철변전소 전력부하패턴 점검 프로그램 개발 및 요금최적화)

  • Jeon, Yong-Joo;Lee, Gi-Chun;Park, Ki-Bum;Lee, Tae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1163-1164
    • /
    • 2007
  • At present, one of the big characteristics in electric power market in korea is unique seller but in the near future competitions are expected in the market. so additional service for the electric power are expected. Also with development of IT technology, remote inspection for power usage are possible so as consumption pattern analysis. KORAIL is one of the biggest consumer in electric power market so it is necessary to investigate power consumption pattern. This paper presents electric power rate definition program based on billing system database and also basic power rate optimization method. Base on the substation annual power usage DB data, the characteristic of the substation power consumption are investigated and effective electrical billing system are compared each other. Through this program it is verified that we can save more then several hundred million won for a year.

  • PDF

State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

  • Wang, Guoxu;Wu, Jie;Zeng, Bifan;Xu, Zhibin;Wu, Wanqiang;Ma, Xiaoqian
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.134-140
    • /
    • 2017
  • A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

Optimal Design of Permanent Magnetic Actuator for Permanent Magnet Reduction and Dynamic Characteristic Improvement using Response Surface Methodology

  • Ahn, Hyun-Mo;Chung, Tae-Kyung;Oh, Yeon-Ho;Song, Ki-Dong;Kim, Young-Il;Kho, Heung-Ryeol;Choi, Myeong-Seob;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.935-943
    • /
    • 2015
  • Permanent magnetic actuators (P.M.A.s) are widely used to drive medium-voltage-class vacuum circuit breakers (V.C.B.s). In this paper, a method for design optimization of a P.M.A. for V.C.B.s is discussed. An optimal design process employing the response surface method (R.S.M.) is proposed. In order to calculate electromagnetic and mechanical dynamic characteristics, an initial P.M.A. model is subjected to numerical analysis using finite element analysis (F.E.A.), which is validated by comparing the calculated dynamic characteristics of the initial P.M.A. model with no-load test results. Using tables of mixed orthogonal arrays and the R.S.M., the initial P.M.A. model is optimized to minimize the weight of the permanent magnet (P.M.) and to improve the dynamic characteristics. Finally, the dynamic characteristics of the optimally designed P.M.A. are compared to those of the initially designed P.M.A.

Computationally Effective Optimization of Hybrid Vehicle Powertrain Design Using Characteristic Loss Evaluation (특성 손실 평가를 통한 하이브리드 자동차 동력전달장치의 빠른 설계 최적화)

  • Park, Seho;Ahn, Changsun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.591-600
    • /
    • 2015
  • The efficiency of a powertrain system of hybrid vehicle is highly dependent on the design and control of the hybrid powertrain system. In other words, the optimal design of the powertrain systems is coupled with optimal control of the powertrain system. Therefore, the solution of an optimal design problem for hybrid vehicles is computationally and timely very expensive. For example, dynamic programming, which is a recursive optimization method, is usually used to evaluate the best fuel economy of certain hybrid vehicle design, and, thus, the evaluation takes tens of minutes to several hours. This research aims to accelerate the speed of efficiency evaluation of hybrid vehicles. We suggest a mathematical treat and a methodological treat to reduce the computational load. The mathematical treat is that the dynamics of system is discretized with sparse sampling time without loss of energy balance. The methodological treat is that the efficiency of the hybrid vehicle is inferred by characteristic loss evaluation that is computationally inexpensive. With the suggested methodology, evaluating a design candidate of hybrid powertrain system is taken few minutes, which was taken several hours when dynamic programming is used.

Section Analysis of EMS Rail by Finite Element Analysis (유한요소해석을 통한 EMS 레일 단면 해석)

  • Yu, Byoung Kwon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • Among the material handling system, EMS (Electric Monorail System), which is the facility of transferring the material hanging on truss, has the strength point of the maximum utilization of working space and the improvement of working environment including low-level noise generation. This paper will introduce the variable method of EMS rail analysis, which has the main role of supporting the whole material weight and guiding them with high-speed transportation, and, based on the analysis, the direction of optimization of the rail design be described. The rail with light-weight and high-strength contributes the reduction of the load of truss, the cost-down of rail production and the easy-installation on site.