• Title/Summary/Keyword: Electric Fault

Search Result 888, Processing Time 0.027 seconds

The calculatation of induced voltages and electromagnetic fields in 154kV sub (154kV 변전소의 전자계와 유도전압계산)

  • Choi, Chang-Hyek;Han, Poong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1659-1662
    • /
    • 1998
  • This paper is to analyze electromagnetic fields on a 154kV substation system and induced voltages on the substation fence when the network is operating in a normal condition or a fault condition in which one phase is shorted with the overhead ground wire. Also, changing the scalar potential and electromagnetic fields that are changed in accordance with changing resistivity and permeability of ground are studied. A finding of the study is that the scalar potential and electromagnetic fields are raised near the tower: The values of electric field on the corner of fence and at the edge of the ground grid are higher than other locations.

  • PDF

A Study on the Fault Diagnosis of Rotor Bars in Squirrel Cage Induction Motors by Finite Element Method (유한요소법을 이용한 농형유도전동기의 회전자 불량 진단에 관한 연구)

  • 김창업;정용배
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.5
    • /
    • pp.287-293
    • /
    • 1996
  • The squirrel cage rotors of induction motors may have several faults such as broken bars, bad spots in end ring and abnormal skew caused by improper processing. These faults may cause bad effects on the performance of the induction motor. This paper proposes the detecting technique of these faults by analyzing the induced current of the detecting electric magnet, using 2-D finite element method taking account of the rotor movement.

  • PDF

Design of Fault Tolerant Controller for Electromagnetic Supension System (자기부상시스템에서의 내고장성 제어기 설계)

  • Seong, Ho-Gyeong;Jo, Heung-Jae;Jeong, Seok-Yeong;Seong, So-Yeong
    • 연구논문집
    • /
    • s.30
    • /
    • pp.79-92
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a reliable output feedback control scheme for the electromagnetic suspension systems in the present of chopper, gap sensor and acceleration sensor failures. The designed controller is an extended version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the simulation and experimental results for proposed controller against chopper, gap sensor and acceleration sensor failures of electromagnetic suspension system.

  • PDF

A Study on Railway Electric Traction Protection System (전철용 보호계전기 시스템에 관한 연구)

  • Lee, Hee-Yong;Kim, Wang-Gon;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1390-1395
    • /
    • 2004
  • Recently, the load increasement and new regenerative systems of electrified railway system make it a difficult to distinguish between the load current and fault current. The failure of traction system perhaps causes over-current to flow. The high current can collapse other railway systems. If failures of the traction system takes place, the failures are detected and protected lest it should provoke high current flow. The over current from such a traction system failure permit to charge high tension voltage and produces high temperature arc, voltage instability, current cutting, and break down railway systems. The traction system failures detect and the system has to immediately cut off from over-current flow. To isolate the failure, the system can distinguish failure current from current flows. It forces us to adapt such as a new intelligent protection system. The protective system in traction system play a role of detecting and isolating failure points. In this paper, we proposed intelligent algorithm for discriminating normal and abnormal situation instead of the system being operated abnormally.

  • PDF

Design of a High-Dimensional Discrete-Time Chaos Circuit with Array Structure

  • Eguchi, Kei;Ueno, Fumio;Tabata, Toru;Zhu, Hongbing;Maruyama, Yuuki
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.211-214
    • /
    • 2000
  • In this paper, a discrete-time S-dimensional chaos circuit (S = 1,2,3,4,...) with array structure is proposed. By employing array structure which consists of 1-dimensional chaos circuits, the proposed circuit can achieve long working-life. This feature is favorable to exploit as a building block of chaos application systems to get into home electric appliances. Further more, the proposed circuit synthesized using switched-current (SI) techniques is suitable for integration. Concerning the proposed circuit, SPICE simulations are performed. SPICE simulations showed that the proposed circuit can generate the chaotic signals in spite of the fault of the building blocks of the proposed circuit. The proposed circuit is integrable by a standard BiCMOS technology.

  • PDF

A Study on Operation Zone of Adaptive Distance Relay on Transmission Line Connected UPFC Between Kangjin and Jangheung (UPFC가 연계 된 강진-장흥 송전선로 보호용 거리계전기의 동작특성에 관한 연구)

  • Lee, Seung-Hyuk;Jung, Chang-Ho;Kim, Jin-O;Jung, Hyun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.305-307
    • /
    • 2003
  • This paper presents an apparent impedance calculation procedure for distance relaying of transmission line involving FACTS (Flexible AC Transmission System) devices, particularly the UPFC (Unified Power Flow Controller), between Kangjin and Jangheung in Korea. With the changes of UPFC's parameters, the measurement and protective range (trip boundaries) of the adaptive distance relay can also be changed. So, it is the most important part in the field of system protection to analyze the operating characteristic of relaying system. The presence of UPFC significantly affects the trip boundaries which are also adversely affected by fault resistance combined with remote end infeed. This paper presents the apparent impedance calculations and the distance relay setting characteristics for faults involving the UPFC in the KEPCO system.

  • PDF

Countermeasure of Voltage Sag in Radial Power Distribution System using Load Transfer Switching (부하 절환 스위칭을 이용한 방사상 배전계통에서의 순간전압강하 대책)

  • Yun, Sang-Yun;Oh, Jung-Hwan;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.11
    • /
    • pp.558-565
    • /
    • 2000
  • In this paper, we propose a method for mitigating for mitigating the effect of voltage of voltage sag in radial power distribution systems using load transfer switching (LTS). The term of LTS is defined that the weakness load points for voltage sag transfer to the alternative source during the fault clearing practices. The sequenced of proposed LTS method is divided into the search of weakness points for voltage sag using the risk assessment model and transfer behavior of weakness points. The search of weakness point is carried out using the risk assessment model of voltage sag and Monte Carlo simulation method and the historical reliability data in Korea Electric Power Corporation (KEPCO) are also used. Through the case studies, we verify the effectiveness of proposed LTS method and present the searching method of effective application points of LTS method using the risk assessment model.

  • PDF

Ananalzing fault current and Protective coordination in the underground line (지중배전선로의 고장전류 크기 및 보호협조분석)

  • Cho, Nam-Hun;Ha, Bok-Nam;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.932-934
    • /
    • 1998
  • Electric power distribution feeders are susceptible to faults caused by a variety of situations such as adverse weather conditions, tree contacts, equipment failure, accidents, etc. Distribution circuit faults result in a number of problems related to the reliability of service and customer power quality. In the past, the permanent interruption of customer service resulting from a blown fuse or a recloser lockout was the only factor which was used to determine service reliability. So we developed KODAS(Korea Distribution Automation System) with successful and had fieid-testing of Distribution Automation System in last three years at Kang-dong Branch Office. In performing the project, KEPRI has gained valuable experience, through dealing with many difficult problem. This paper is depicted about the circuit breaker coordination problems in the Underground for the Distribution Automation Feeder.

  • PDF

Insulation Design and Testing of HTS coil for 6.6 kV Class HTSFCL (6.6kV급 고온초전도 한류기용 HTS 코일의 절연 설계 및 시험)

  • 백승명;정종만;곽동순;류엔반둥;김상현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.263-268
    • /
    • 2003
  • The Electrical insulation design and testing of high temperature superconducting (HTS) coil for high temperature superconducting fault current limiter (HTSFCL) has been performed. Electrical insulating factors of HTS coil for HTSFCL are turn-to-turn, layer-to-layer. The electrical insulation of turn-to-turn depends on surface length, and the electrical insulation of layer-to-layer depends on surface length and breakdown strength of L$N_2$. Therefore, two basic characteristics of breakdown and flashover voltage were experimentally investigated to design electrical insulation for 6.6㎸ Class HTSFCL. We used Weibull distribution to set electric field strength for insulation design. And mini-model HTS coil for HTSFCL was designed by using Weibull distribution and was manufactured to investigate breakdown characteristics. The mini-model HTS coil had passed in AC and Impulse withstand test.

  • PDF

A Simulation and Analysis of Voltage Sag Phenomena Using EMTP (EMTP를 이용한 Voltage Sag 현상 모의 및 고찰)

  • Kim, Y.K.;Kim, C.H.;Lee, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.128-130
    • /
    • 2003
  • In recent years, both utilities and users have expressed their deep concerns about the quality of electric power. Expressed, voltage sag which is one of power quality disturbance is very serious power quality problem on the power system. Voltage sag is a decrease to between 0.1 and 0.9 pu in rms voltage magnitude on the power system for durations from 0.5 cycles to 1 minute. These voltage sags are usually caused by fault condition, overload, and starting of large motors. In this paper, different types of voltage sags are simulated by using EMTP. This paper describes the distinctive characteristic for various sag origins, proposes the effective technique for voltage sag detection using EMTP.

  • PDF