• Title/Summary/Keyword: Electric Coupling

Search Result 445, Processing Time 0.024 seconds

Frequency Tuning of Unimorph Cantilever for Piezoelectric Energy Harvesting (주파수 조정에 따른 에너지 하베스팅용 압전 캔틸레버의 특성)

  • Kim, Hyung-Chan;Song, Hyun-Cheol;Jeong, Dae-Yong;Kim, Hyun-Jai;Yoon, Seok-Jin;Ju, Byeong-Kwon
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.660-663
    • /
    • 2007
  • Piezoelectric energy harvesting from our surrounding vibration has been studied for driving the wireless sensor node. To change the vibration energy into the electric-energy efficiently, the natural frequency of cantilever needs to be adjusted to that of a vibration source. When adding 6.80g mass on the end of the fabricated cantilever, a natural frequency shifts from 136 Hz into 49.5 Hz. In addition, electro-mechanical coupling factor increased from 10.20% to 11.90% and resulted in the 1.18 times increase of maximum output power.

The Influence of Energy Density upon Detection Time of Information Signal in AF Track Circuit (AF궤도회로에서 에너지 밀도가 정보신호 검출시간에 미치는 영향)

  • Kim, Min-Seok;Hwang, In-Kwang;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1146-1151
    • /
    • 2011
  • There are two methods for train control in information transmission by using track circuit system and installing wayside transmitter. Information signal is transmitted to the on-board antenna by using rails. Continuous information about train intervals, speed and route is received by on-board antenna in AF track circuit system. The information signal is included with carrier wave and received by magnetic coupling in the on-board antenna. Therefore, it is important to define standard current level in the AF track circuit system. When current flowed to rails is low, magnetic sensors are not operated by decreasing magnetic field intensity. Hence, SNR is decreased because electric field intensity is decreased. When the SNR is decreased, there is the serious influence of noise upon demodulation. So, the frequency of information signal is not extracted in frequency response. Thus, it is possible to happen to train accident and delay as the information signal is not analyzed in the on-board antenna. In this paper, standard energy density is calculated by using Parseval's theory in UM71c track circuit. Hence, detection time of information signal is presented.

Flexible Voltage Support Control with Imbalance Mitigation Capability for Inverter-Based Distributed Generation Power Plants under Grid Faults

  • Wang, Yuewu;Yang, Ping;Xu, Zhirong
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1551-1564
    • /
    • 2016
  • The high penetration level of inverter-based distributed generation (DG) power plants is challenging the low-voltage ride-through requirements, especially under unbalanced voltage sags. Recently, a flexible injection of both positive- (PS) and negative-sequence (NS) reactive currents has been suggested for the next generation of grid codes. This can enhance the ancillary services for voltage support at the point of common coupling (PCC). In light of this, considering distant grid faults that occur in a mainly inductive grid, this paper proposes a complete voltage support control scheme for the interface inverters of medium or high-rated DG power plants. The first contribution is the development of a reactive current reference generator combining PS and NS, with a feature to increase the PS voltage and simultaneously decrease the NS voltage, to mitigate voltage imbalance. The second contribution is the design of a voltage support control loop with two flexible PCC voltage set points, which can ensure continuous operation within the limits required in grid codes. In addition, a current saturation strategy is also considered for deep voltage sags to avoid overcurrent protection. Finally, simulation and experimental results are presented to validate the effectiveness of the proposed control scheme.

A Study on the Characteristics of Local Corrosion for Gas Absorption Refrigeration and Hot Water Systems in LiBr-$H_2O$ Working Fluids (LiBr작동유체 중에서 가스흡수식 냉온수기의 국부부식 특성에 관한 연구)

  • Uh- Joh Lim;Ki-Cheol Jeong;Byoung-Du Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.714-720
    • /
    • 2003
  • Due to the electric power shortage in summer season and regulation of freon refrigerant, the application of gas absorption refrigeration and hot water systems are considerably increasing trend. But, this system consists of condenser, heat exchanger, supply pipe and radiator etc. which are easily corroded by acidity and dissolved oxygen and gases. In result, this system occurs scale attachment and corrosion damage like pitting and crevice corrosion. In this study, electrochemical polarization test of heat exchanger tubing material (copper, aluminium brass, 30% cupronickel(30% Cu-Ni)) was carried out in 60% lithium bromide solution at $95^{\circ}C$. As a result of polarization test, corrosion behavior by impressed potential and local corrosion. such as galvanic corrosion, pitting corrosion behavior, of tubing materials was investigated. The main results obtained are as follows: (1) The effect of pitting and crevice corrosion control of 30% cupronickel in 60% LiBr solution at $95^{\circ}C$ is very excellent. (2) Dissimilar metal corrosion of 30% cupronickel coupling to aluminium bronze is the most sensitive. (3) Current density behavior of tube materials by impressed potential is high in order of copper > aluminium brass > 30% cupronickel.

Sensitivity analysis for optimal design of piezoelectric structures (압전지능구조물의 최적설계를 위한 민감도 해석)

  • 김재환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.267-273
    • /
    • 1998
  • This study aims at performing sensitivity analysis of piezoelectric smart structure for minimizing radiated noise from the structure, The structure consists of a flat plate on which disk shaped piezoelectric actuator is mounted, and finite element modeling is used for the structure. The finite element modeling uses a combination of three dimensional piezoelectric, flat shell and transition elements so thus it can take into account the coupling effects of the piezoelectric device precisely and it can also reduce the degrees of freedom of the finite element model. Electric potential on the piezoelectric actuator is taken as a design variable and total radiated power of the structure is chosen as an objective function. The objective function can be represented as Rayleigh's integral equation and is a function of normal displacements of the structure. For the convenience of computation, all degrees of freedom of the finite element equation is condensed out except the normal displacements of the structure. To perform the design sensitivity analysis, the derivative of the objective function with respect to the normal displacements is found, and the derivative of the norma displacements with respect to the design variable is calculated from the finite element equation by using so called the adjoint variable method. The analysis results are compared with those of the finite difference method, and shows a good agreement. This sensitivity analysis is faster and more accurate than the finite difference method. Once the sensitivity analysis program is used for gradient-based optimizations, one could achieve a better convergence rate than non-derivative methods for optimal design of piezoelectric smart structures.

  • PDF

Investigation of piezoelectric ceramic size effect for miniaturing the piezoelectric energy harvester (소형 압전 에너지 하베스터 구현을 위한 세라믹 크기 변화)

  • Kim, Hyung-Chan;Jung, Woo-Suk;Kang, Chong-Yun;Yoon, Seok-Jin;Ju, Byeong-Kwon;Jeong, Dae-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.267-272
    • /
    • 2008
  • Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the small wireless sensor nodes. As piezoelectric uni-morph cantilever structure can transfer low vibration to large displacement, this structure was commonly deployed to harvest electric energy from vibrations. Through our previous results, when stress was applied on the cantilever, stress was concentrated on the certain point of the ceramic of the cantilever. In this study, for miniaturing the energy harvester, we investigated how the size of ceramics and the stress distribution in ceramic affects energy harvester characteristics. Even though the area of ceramic was 28.6 % decreased from $10{\times}35{\times}0.5mm^3$ to $10{\times}25{\times}0.5mm^3$, both samples showed almost same maximum power of 0.45 mW and the electro-mechanical coupling factor ($K_{31}$) of 14 % as well. This result indicated that should be preferentially considered to generate high power with small size energy harvester.

Analysis of Piezoelectric Ceramic Multi-layer Actuators Based on the Electro-mechanical Coupled Meshless Method (전기-기계 결합 하중을 받는 압전 세라믹 다층 작동기의 무요소 해석)

  • Kim, Hyun-Chul;Guo, Xianghua;Kim, Won-Seok;Fang, Daining;Lee, Jung-Ju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. The method employs an element free Galerkin (EFG) formulation and an enriched basic function as well as special shape functions that contain discontinuous derivatives. Based on the moving least squares (MLS) interpolation approach, The EFG method is one of the promising methods for dealing with problems involving progressive crack growth. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing procedure required in the conventional finite element method (FEM) is avoided. The numerical results show that the proposed method yields an accurate near-tip stress field in an infinite piezoelectric plate containing an interior hole. Another example is to study a ceramic multilayer actuator. The proposed model was found to be accurate in the simulation of stress and electric field concentrations due to the abrupt end of an internal electrode.

Effect of CuO on the Low Temperature Sintering Properties of PSN-PNN-PZT Ceramics

  • Jeong, Yeong-Ho;Yoo, Ju-Hyun;Nam, Seung-Hyon;Lee, Su-Ho;Chung, Kwang-Hyun;Lee, Duck-Chool
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.109-112
    • /
    • 2004
  • In this study, in order to develop the low temperature sintering ceramics for ultrasonic vibrator, Pb(Sb$\_$$\frac{1}{2}$/Nb$\_$$\frac{1}{2}$/) O$_3$-Pb(Ni$\_$1/3/Nb$\_$2/3/)O$_3$-Pb(Zr$\_$0.48/Ti$\_$0.52/)O$_3$ ceramics were manufactured as a function of the amount of CuO addition, and their dielectric and piezoelectric characteristics were investigated. With increasing CuO addition, the grain size and density increased up to 0.3 wt% CuO addition. Taking into consideration electromechanical coupling factor(k$\_$p/) of 0.53, mechanical quality factor(Q$\_$m/) of 423, dielectric constant($\varepsilon$$\_$r/) of 1,759 and piezoelectric constant(d$\_$33/) of 362pC/N, it could be concluded that 0.5 wt% CuO added composition ceramic sintered at 920$^{\circ}C$ was suitable for ultrasonic vibrator application.

Low-ε Static Probe Development for 15N-1H Solid-state NMR Study of Membrane Proteins for an 800 MHz NB Magnet

  • Park, Tae-Joon;Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.823-826
    • /
    • 2013
  • A low-${\varepsilon}$ solid-state NMR(Nuclear Magnetic Resonance) probe was developed for the spectroscopic analysis of two-dimensional $^{15}N-^1H$ heteronuclear dipolar coupling in dilute membrane proteins oriented in hydrated and dielectrically lossy lipid environments. The system employed a 800 MHz narrow-bore magnet. A solenoid coil strip shield was used to reduce deleterious RF sample heating by minimizing the conservative electric fields generated by the double-tuned resonator at high magnetic fields. The probe's design, construction, and performance in solid-state NMR experiments at high magnetic fields are described here. Such high-resolution solid-state NMR spectroscopic analysis of static oriented samples in hydrated phospholipid bilayers or bicelles could aid the structural analysis of dilute biological membrane proteins.

Coordinated Control of Reactive Power between STATCOMs and Wind Farms for PCC Voltage Regulation

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Van, Tan Luong;Kang, Jong-Ho
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.909-918
    • /
    • 2013
  • This paper proposes a coordinated control of the reactive power between the STATCOMs (static synchronous compensators) and the grid-side converters (GSC) of wind farms equipped with PMSGs (permanent-magnet synchronous generators), by which the voltage fluctuations at the PCC (point of common coupling) are mitigated in the steady state. In addition, the level of voltage sags is reduced during grid faults. To do this, the GSC and the STATCOM supply reactive power to the grid coordinately, where the GSCs are fully utilized to provide the reactive power for the grid prior to the STATCOM operation. For this, the GSC capability of delivering active and reactive power under variable wind speed conditions is analyzed in detail. In addition, the PCC voltage regulation of the power systems integrated with large wind farms are analyzed for short-term and long-term operations. With this coordinated control scheme, the low power capacity of STATCOMs can be used to achieve the low-voltage ride-through (LVRT) capability of the wind farms during grid faults. The effectiveness of the proposed strategy has been verified by PSCAD/EMTDC simulation results.