• Title/Summary/Keyword: Electric Charging Infrastructures

Search Result 8, Processing Time 0.02 seconds

Analysis of Construction Plans of Rapid Charging Infrastructures based on Gas Stations in Rural Areas to Propagate Electric Vehicles (전기자동차 보급을 위한 농촌지역의 주유소 기반 급속 충전인프라 구축 방안 분석)

  • Kim, Solhee;Kim, Taegon;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • As environmental concerns including climate change drive the strong regulations for car exhaust emissions, electric vehicles attract the public eye. The purpose of this study is to identify rural areas vulnerable for charging infrastructures based on the spatial distributions of the current gas stations and provide the target dissemination rates for promoting electric cars. In addition, we develop various scenarios for finding optimal way to expand the charging infrastructures through the administrative districts data including 11,677 gas stations, the number of whole national gas stations. Gas stations for charging infrastructures are randomly selected using the Monte Carlo Simulation (MCS) method. Evaluation criteria for vulnerability assessment include five considering the characteristic of rural areas. The optimal penetration rate is determined to 21% in rural areas considering dissemination efficiency. To reduce the vulnerability, the charging systems should be strategically installed in rural areas considering geographical characteristics and regional EV demands.

An Analysis of the Security Threats and Security Requirements for Electric Vehicle Charging Infrastructure (전기자동차 충전 인프라에서의 보안위협 및 보안요구사항 분석)

  • Kang, Seong-Ku;Seo, Jung-Taek
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.1027-1037
    • /
    • 2012
  • With response to the critical issue of global warming, Smart Grid system has been extensively investigated as next efficient power grid system. Domestically, Korean is trying to expand the usage of Electric Vehicles (EVs) and the charging infrastructure in order to replace the current transportation using fossil fuels holding 20% of overall CO2 emission. The EVs charging infrastructures are combined with IT technologies to build intelligent environments but have considerable number of cyber security issues because of its inherent nature of the technologies. This work not only provides logical architecture of EV charging infrastructures with security threats based on them but also analyses security requirements against security threats in order to overcome the adversarial activities to Smart Grid.

Underground parking lot planning study for electric vehicle charging and parking (전기자동차 주차 및 충전을 위한 지하주차장 계획연구)

  • Chin, Kyung Il;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.39-44
    • /
    • 2013
  • As the use of electric vehicles perspectively increases, infrastructures for charging car batteries need to be properly planned for satisfying new requirements. This study aimed at theoretically investigating the relative laws, size of existing parking lots, and diverse car sizes for suggesting parking places for electric vehicles. In addition, potential problems for changing existing parking lots to new parking lots for electric vehicles were thoroughly considered. Based on the problem recognition, the feasibility, in particular, of the change of existing parking place to new place equipped with electricity charging systems was investigated. The comprehensive reviews and surveys revealed that additional systems for charging electricity need to be developed to be suspended on the ceiling for existing parking lots in order to prevent changing current layout of the space. This system will alleviate the perspective problems when the charging systems are located on the floor such as contamination, electric shock, and damage by cars. Further study will be followed for testing performance of the suggested systems in the actual parking lots.

Demand Forecasts Analysis of Electric Vehicles for Apartment in 2020 (2020년 아파트의 전기자동차 수요예측 분석 연구)

  • Byun, Wan-Hee;Lee, Ki-Hong;Lee, Sang-Hyuk;Kee, Ho-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.81-91
    • /
    • 2012
  • The world has been replacing fast fossil fuels vehicles with electric vehicles(EVs) to cope with climate change. The government set a goal which EVs will be substitute at least 10% of the domestic small vehicles with EVs until 2020, and will try to build electric charging infrastructures in apartments with the revision the law of 'the housing construction standards'. In apartments the EVs charging infrastructure and parking space is, essential to accomplish the goal. But the studies on EVs demand are few. In this study, we predicted that the demand for EVs using time-series analysis of statistical data, survey results for apartments residents in the metropolitan area. As a result, the ratio of the EVs appeared to be 6~21% for the total vehicles in a rental apartments for the years 2020, 21~39% in apartments for sales. For the EVs, the maximum power required for 1,000 households in rental apartment is predicted to be about 4200 kwh on a daily basis, while the maximum power in the apartment for sales is predicted to be 7800kwh.

Analysis of Vulnerable Districts for Electronic Vehicle Charging Infrastructure based on Gas Stations (주유소 기반의 전기자동차 충전인프라 구축에 대한 취약지역 분석)

  • Kim, Taegon;Kim, Solhee;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.4
    • /
    • pp.137-143
    • /
    • 2014
  • Car exhaust emissions are recognized as one of the key sources for climate change and electric vehicles have no emissions from tailpipe. However, the limited charging infrastructures could restrict the propagation of electric vehicles. The purpose of this study is to find the vulnerable districts limited to the charging station services after meeting the goal of Ministry of Knowledge Economy(12%). We assumed that the charging service can be provided by current gas stations. The range of the vulnerable grades was determined by the accessibility to current gas stations and the vulnerable regions were classified considering the optimal number of charging stations estimated by the efficiency function. We used 4,827 sub-municipal divisions and 11,677 gas station locations for this analysis. The results show that most of mountain areas are vulnerable and the fringe areas of large cities generally get a good grade for the charging infrastructure. The gangwon-do, jeollanam-do, gyeongsangbuk-do, and chungcheongnam-do include more than 40% vulnerable districts.

Study on drawing up the integration method between combined information communication network design and information management system for Transportation-Power-Infrastructures on the electric vehicle (전기자동차 교통-전력-시설 통합 정보통신 네트워크 설계 및 정보관리시스템 간 연계 방안 수립에 관한 연구)

  • Choi, Yoon-Gun;Hwang, Tae-Hong;Kim, Geon-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.60-70
    • /
    • 2011
  • Vehicle location detection and wireless communication method have be designed along the same lines as GPS, CDMA and WLAN, which is based upon the selecting factors such as state-of-art technology trend, accuracy, stability, and economic feasibility, in order to select the optimum method of information communication networks for integrated "Transportation-Power-Facilities" on the electric bus. In addition, the key features of each alternative for an efficient linkage have been review and the integration methodology for linking among Transportation Charging Center, Transportation(ITS, BIS) Center and smart Grid Center has been drawn up based on a technical level of difficulty of each alternative, political and administrative difficulties, and expense justification.

A Study on the Priority of Site Selection for Hydrogen Vehicle Charging Facilities in Seoul Using a Market Demand Prediction Model (시장수요예측 모델을 활용한 서울시 수소차 충전시설의 입지선정 우선순위에 관한 연구)

  • Jin Sick, Kim;Kook Jin, Jang;Joo Yeoun, Lee;Myoung Sug, Jung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • Hydrogen is expected to be widely applied in most sectors within the current energy system, such as transportation and logistics, and is expected to be economically and technologically utilized as a power source to achieve vehiclebon emission reduction. In particular, the construction of hydrogen charging station infrastructure will not only support the distribution of hydrogen electric vehicles, but also play an important role in building a hydrogen logistics system. Therefore, This paper suggest additional charging infrastructure areas in Seoul with a focus on supply according to the annual average growth rate (CAGR), centering on Seoul, where hydrogen vehicles are most widely distributed. As of February 2022, hydrogen charging infrastructures were installed in Gangseo-gu, Gangdong-gu, Mapo-gu, Jung-gu, and Seocho-gu in downtown Seoul. Next, looking at the number of hydrogen vehicles by administrative dong in Seoul from 2018 to 2022, Seocho-gu has the most with 246 as of 2022, and Dongjak-gu has the highest average growth rate of 215.4% with a CAGR of 215.4%. Therefore, as a result of CAGR analysis, Dongjak-gu is expected to supply the most hydrogen vehicles in the future, and Seocho-gu currently has the most hydrogen vehicles, so it is likely that additional hydrogen charging infrastructure will be needed between Dongjak-gu and Seocho-gu.

Evaluation of Voltage Sag and Unbalance due to the System Connection of Electric Vehicles on Distribution System

  • Lee, Soon-Jeong;Kim, Jun-Hyeok;Kim, Doo-Ung;Go, Hyo-Sang;Kim, Chul-Hwan;Kim, Eung-Sang;Kim, Seul-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.452-460
    • /
    • 2014
  • Due to increased concerns for rising oil prices and environmental problems, various solutions have been proposed for solving energy problems through tightening environmental regulations such as those regarding $CO_2$ reduction. Among them, Electrical Vehicles (EVs) are evaluated to be the most realistic and effective approach. Accordingly, research and development on EVs and charging infrastructures are mainly proceeding in developed countries. Since EVs operate using electric energy form a battery, they must be connected to the power system to charge the battery. If many EVs are connected during a short time, power quality problems can occur such as voltage sag, voltage unbalance and harmonics which are generated from power electronics devices. Therefore, when EVs are charged, it is necessary to analyze the effect of power quality on the distribution system, because EVs will gradually replace gasoline vehicles, and the number of EVs will be increased. In this paper, a battery for EVs and a PWM converter are modeled using an ElectroMagnetic Transient Program (EMTP). The voltage sag and unbalance are evaluated when EVs are connected to the distribution system of the Korea Electric Power Corporation (KEPCO). The simulation results are compared with IEEE standards.