• Title/Summary/Keyword: Electric Charge

Search Result 1,133, Processing Time 0.03 seconds

A study on the high transparent and antistatic thin films on sodalime glass by reactive pulsed DC magnetron sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조한 소다라임 유리의 고투과 및 대전방지 박막특성 연구)

  • Jung, Jong-Gook;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • Recently, transmittance of photomasks for ultra-violet (UV) region is getting more important, as the light source wavelength of an exposure process is shortened due to the demand for technologies about high integration and miniaturization of devices. Meanwhile, such problems can occur as damages or the reduction of yield of photomask as electrostatic damage (ESD) occurs in the weak parts due to the accumulation of static electricity and the electric charge on chromium metal layers which are light shielding layers, caused by the repeated contacts and the peeling off between the photomask and the substrate during the exposure process. Accordingly, there have been studies to improve transmittance and antistatic performance through various functional coatings on the photomask surface. In the present study, we manufactured antireflection films of Nb2O5, | SiO2 structure and antistatic films of ITO designed on 100 × 100 × 3 mmt sodalime glass by DC magnetron sputtering system so that photomask can maintain high transmittance at I-line (365 nm). ITO thin film deposited using In/Sn (10 wt.%) on sodalime glass was optimized to be 10 nm-thick, 3.0 × 103 𝛺/☐ sheet resistance, and about 80% transmittance, which was relatively low transmittance because of the absorption properties of ITO thin film. High average transmittance of 91.45% was obtained from a double side antireflection and antistatic thin films structure of Nb2O5 64 nm | SiO2 41 nm | sodalime glass | ITO 10 nm | Nb2O5 64 nm | SiO2 41 nm.

Battery Sensitivity Analysis on Initial Sizing of eVTOL Aircraft (전기 추진 수직이착륙기의 초기 사이징에 대한 배터리 민감도 분석)

  • Park, Minjun;Choi, Jou-Young Jason;Park, Se Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.819-828
    • /
    • 2022
  • Sensitivity of aircraft sizing depending on battery performance was studied for a generic quad tilt rotor type electric vertical takeoff and landing vehicle. The mission requirements proposed by Uber Elevate and NASA were used for initial sizing, and the calculated gross weight is ranged between 5,000lb and 11,000lb for battery specific energy range of 200-400Wh/kg in pack level and continuous discharge rate range of 4-5C. For the assumed gross weight of 7,000lb, the required battery performance was calculated with two different criteria: available power and energy, and the effects of battery specific energy and discharge rate are analyzed. The maximum discharge rate is also recommended considering failure cases such as one battery pack inoperative and one prop rotor inoperative.

Surface Modification Technology and Research Trends of Separators for Lithium-Ion Batteries (리튬이온 전지용 분리막의 표면 개질 기술 및 연구 동향)

  • Ha, Seongmin;Kim, Daesup;Kwak, Cheol Hwan;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.343-351
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are considered promising energy storage devices with good performance such as high energy density, slow self-discharge rate, high rate charge capacity, and long battery life. However, the application of these LIBs in the high-energy density electric vehicle and large device industries poses a major safety problem. In order to solve this problem, developing a material having high thermal stability and intrinsic safety is the ultimate solution for improving the stability and electrochemical performance of LIBs. This review introduced a surface modification technology of a separator to overcome the stability problem of a commercial separator, and summarized and summarized the research trends using the modified separator for a lithium-ion battery. Based on this, the future prospects for the separator development by surface modification were discussed.

Study Case on the Bag Cultivation of Pleurotus ostreatus Using Fermenter (발효기를 이용한 느타리버섯 봉지재배 경영사례)

  • Chang, Hyun-You;Suh, Gyu-Sun;Lee, Soo-In
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.169-181
    • /
    • 2008
  • The purpose of this study was to produce Pleurotus ostreatus using fermenter with bag cultivation. These results are as follows. 1. While mushroom composts were being fermented in a fermenter, the physical property of the fermented composts was getting better when there isn't any screw or revolving flies in the fermenter and the strength of pressing the composts was getting less. 2. The composts were fermented well as slaked lime of 1% density added to the composts. 3. According to the result of examining our fermenting ways, composts were in the best condition after being fermented for 48 hours since the temperature in a fermenter has come to 60℃, which could be reached by heating the fermenter by 40℃ after putting compost materials and water into it. 4. The good condition of fermenting could be maintained by controlling the speed of revolving flies, therefore the speed be down when the temperature is above 60℃ and up bellow 60℃. 5. Since the composts had been added with 1.5~2% of cottonseed meal or rice bran, the fermented composts were in good condition and also the quantity and quality of the mushroom produced on the fermented composts were satisfied. 6. There were needed 7 hours of labour for 3days from the first day of putting composts into a fermenter for fermenting 3.5M/T(10,000~12,000bags of 750~800g per bag) of composts to the third day of finishing the fermenting work, and also the cost was 112,066₩(130$) including 52,066₩(60$) of electric charge and fuel expense.

Analysis of Preconcentration Dynamics inside Dead-end Microchannel (막다른 미세유로 내부의 농축 동역학 분석)

  • Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.155-161
    • /
    • 2023
  • Ion concentration polarization (ICP) is one of the essential important mechanisms for biomolecule preconcentration devices as well as a fundamental transport phenomenon found in electrodialysis, electrochemical cell, etc. The ICP triggered by externally applied voltage enables the biomolecular analyte to be preconcentrated at an arbitrary position by a locally amplified electric field inside the microchannel. Conventional preconcentration methodologies using the ICP have two limitations: uncertain equilibrium position and hydrodynamic instability of preconcentration plug. In this work, a new preconcentration method in the dead-end microchannel around cation exchange membrane was numerically studied to resolve the limitations. As a result, the numerical model showed that the analyte was concentrated at a shock front developed in a geometrically confined dead-end channel. Furthermore, the electrokinetic behaviors for preconcentration dynamics were analyzed by changing microchannel's applied voltage and volumetric charge concentration of microchannel as key parameters to describe the dynamics. This work would provide an effective means for a point-of-care platform that requires ultra-fast preconcentration method.

Particle-motion-tracking Algorithm for the Evaluation of the Multi-physical Properties of Single Nanoparticles (단일 나노입자의 다중 물리량의 평가를 위한 입자 모션 트랙킹 알고리즘)

  • Park, Yeeun;Kang, Geeyoon;Park, Minsu;Noh, Hyowoong;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.175-179
    • /
    • 2022
  • The physical properties of biomaterials are important for their isolation and separation from body fluids. In particular, the precise evaluation of the multi-physical properties of single biomolecules is essential in that the correlation between physical and biological properties of specific biomolecule. However, the majority of scientific equipment, can only determine specific-physical properties of single nanoparticles, making the evaluation of the multi-physical properties difficult. The improvement of analytical techniques for the evaluation of multi-physical properties is therefore required in various research fields. In this study, we developed a motion-tracking algorithm to evaluate the multi-physical properties of single-nanoparticles by analyzing their behavior. We observed the Brownian motion and electric-field-induced drift of fluorescent nanoparticles injected in a microfluidic chip with two electrodes using confocal microscopy. The proposed algorithm is able to determine the size of the nanoparticles by i) removing the background noise from images, ii) tracking the motion of nanoparticles using the circular-Hough transform, iii) extracting the mean squared displacement (MSD) of the tracked nanoparticles, and iv) applying the MSD to the Stokes-Einstein equation. We compared the evaluated size of the nanoparticles with the size measured by SEM. We also determined the zeta-potential and surface-charge density of the nanoparticles using the extracted electrophoretic velocity and the Helmholtz-Smoluchowski equation. The proposed motion-tracking algorithm could be employed in various fields related to biomaterial analysis, such as exosome analysis.

The Effect of Electrochemical Treatment in Lowering Alkali Leaching from Cement Paste to an Aquatic Environment: Part 2- Microscopic Observation (전기화학적 기법을 통한 시멘트페이스트의 수중노출에 따른 알칼리이온 침출저감 효과: Part 2- 미세구조 분석)

  • Bum-Hee Youn;Ki-Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.145-152
    • /
    • 2023
  • In this study, microscopic observation was made on the surface of cement paste immersed in an aquatic environment for 100 days at electrochemical treatment to mitigate the leaching of alkali ions. To quantitatively rank the hydration products, unhydrated grains and porosity in the interfacial region, the backscattered electron(BSE) images were obtained by scanninng electron microscopy. As a result, it was found that the porosity on the surface was significantly reduced by the electrochemical treatment, while unhydrated grains were more or less increased presumably limited hydration reaction under electric charge. At electrochemical treatment, Ca2+ ions present in C-S-H gel could be precipitated with OH- to form Ca(OH)2 then to lower C-S-H gel and simultaneously to enhance Ca(OH)2. Substantially, the risk of alkali leaching could be lowered by the limited ionized matrix under electrochemical treatment.

Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries (리튬이차전지의 과충전에 의한 열폭주 현상의 이해)

  • Minseo Lee;Ji-sun You;Kyeong-sin Kang;Jaesung Lee;Sungyool Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.55-72
    • /
    • 2024
  • Secondary batteries are used as an essential renewable energy source in our lives, such as electric vehicles and energy storage systems (ESS), as an alternative to fossil fuels due to global warming. However, cases of battery fires and explosions have been reported due to thermal runaway in secondary batteries due to various causes such as overdischarge, high-speed charging and discharging, and external short circuit, and great efforts are being made to find solutions suitable for each cause. In particular, as cases presumed to be caused by the overcharging process have been reported, this review will examine the chemical reactions of secondary batteries that can occur during the overcharging process and discuss risk investigation methods to check and prevent them.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.

Dielectric-Spectroscopic and ac Conductivity Investigations on Manganese Doped Layered Na1.9Li0.1Ti3O7 Ceramics (망간이 혼입된 층상구조 Na1.9Li0.1Ti3O7 세라믹스의 유전율 ‒ 분광법과 교류 전도도 측정 연구)

  • Pal, Dharmendra;Pandey, J.L.;Shripal
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • The dielectric-spectroscopic and ac conductivity studies firstly carried out on layered manganese doped Sodium Lithium Trititanates ($Na_{1.9}Li_{0.1}Ti_3O_7$). The dependence of loss tangent (Tan$\delta$), relative permittivity ($\varepsilon_r$) and ac conductivity ($\sigma_{ac}$) in temperature range 373-723K and frequency range 100Hz-1MHz studied on doped derivatives. Various conduction mechanisms are involved during temperature range of study like electronic hopping conduction in lowest temperature region, for MSLT-1 and MSLT-2. The hindered interlayer ionic conduction exists with electronic hopping conduction for MSLT-3. The associated interlayer ionic conduction exists in mid temperature region for all doped derivatives. In highest temperature region modified interlayer ionic conduction along with the polaronic conduction, exist for MSLT-1, MSLT-2, and only modified interlayer ionic conduction for MSLT-3. The loss tangent (Tan$\delta$) in manganese-doped derivatives of layered $Na_{1.9}Li_{0.1}Ti_3O_7$ ceramic may be due to contribution of electric conduction, dipole orientation, and space charge polarization. The corresponding increase in the values of relative permittivity may be due to increase in number of dipoles in the interlayer space while the corresponding decrease in the values of relative permittivity may be due to the increase in the leakage current due to the higher doping.