• Title/Summary/Keyword: Elastomeric Composites

Search Result 31, Processing Time 0.025 seconds

Emerging Technologies of Elastomers (엘라스토머의 새로운 도약)

  • Jeong, Kwang-Un;Jin, Kwang-Yong;Nah, Chang-Woon;Lee, Myong-Hoon
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.63-71
    • /
    • 2008
  • Up to now, most of researches and practical applications of polymeric elastomers have been focused on rubber, a type of elastomeric materials. Therefore, it has been widely accepted that rubber industry is tire industry. In this review, we would like to illuminate new emerging technologies of elastomers. Among many examples, there are actuators which can transform their mechanical shapes with respect to the surrounding environments. Paper folding (so called "origami" in Japanese) technology can be another good example. Utilizing paper folding technology, three-dimensional (3D) architectures containing multi-functions can be constructed from programmed 2D structures. Elastomer microlens can also be fabricated using lithography technologies combined with chemical reactions.

A Study on the Empirical Modeling of Rubber Bushing for Dynamic Analysis (동역학 해석을 위한 고무부싱의 실험적 모델링에 대한 연구)

  • Sohn, Jeong-Hyun;Baek, Woon-Kyung;Kim, Dong-Jo
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.121-130
    • /
    • 2004
  • A rubber bushing connects the components of the vehicle each other and reduce the vibration transmitted to the chassis frame. A rubber bushing has the nonlinear characteristics for both the amplitude and the frequency and represents the hysteretic responses under the periodic excitation. In this paper, one-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop m empirical bushing model with an artificial neural network. The back propagation algerian is used to obtain the weighting factor of the neural network. A numerical example is carried out to verify the developed bushing model and the vehicle simulation is performed to show the fidelity of proposed model.

Synthesis, Properties and Applications of Polyamide Thermoplastic Elastomers (폴리아미드계 열가소성탄성체의 합성, 특성 및 응용)

  • Lee, Kang-Suk;Choi, Myung-Chan;Kim, Sung-Man;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.156-164
    • /
    • 2010
  • Thermoplastic elastomers (TPEs) exhibit both elastomeric behaviors at used temperature range and melt processibility. Polyamide based thermoplastic elastomers (TPAEs) are segmented block copolymers with hard blocks consisting of polyamide segments, while the soft blocks usually consist of flexible segments having a low glass transition temperature. The TPAE is one of the engineering TPEs possessing high thermal stability, excellent mechanical performances, chemical resistance and excellent processibility. And they showed wide range of physical and functional properties depending upon the structure of each segment and their relative contents and the hybridization with various inorganic particles. In this review, synthesis, properties, and possible applications of TPAEs are summarized.

Effect of Poly(propylene-co-octene) as a Compatibilizer on Mechanical Properties and Weldline Characteristics of Polypropylene/Poly(ethylene-co-octene) Blends (폴리프로필렌/에틸렌-옥텐 공중합체 블렌드의 기계적 성질 및 웰드라인 물성에 미치는 폴리프로필렌-옥텐 공중합체의 영향에 관한 연구)

  • Koo, Hyo-Seon;Son, Young-Gon
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • Effect of poly(propylene-co-octene) as a compatibilizer in toughened polypropylene/ poly(ethylene-co-octene) (EOC) was investigated. The EOCs used were metallocene catalyzed commercial linear low density polyethylene and they are elastomeric materials. The poly(propylene-co-octene) was synthesized by metallocene catalyst in our laboratory to be used as a compatibilizer in PP/EOC blends. PP/EOC blends without compatibilizer shows very low mechanical properties in specimens with weldlines while incorporation of a compatibilizer significantly increases the mechanical properties of specimens with weldlines. However, compatibilized PP/EOC blends does not show increased impact property in a weldline free specimen and it is attributed to low molecular weight of the poly(propylene-co-octene) synthesized in present study. It is expected that the poly(propylene-co-octene) having increased molecular weight provides very good performance as an effective compatibilizer in toughened polypropylene/EOC blends.

Effect of Transoctylene Rubber(TOR) on the Properties of Natural Rubber/isotactic Polypropylene Blends (Transoctylene rubber(TOR)의 첨가가 NR/isotactic PP 블렌드의 물성에 미치는 영향)

  • Yang, Yung-Chul;Nah, Chang-Woon;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.188-194
    • /
    • 2001
  • Thermoplastic elastomers based on dynamically vulcanized NR/TOR/PP (rubber/PP=70/30) blends were prepared in a Haake banbury mixer. Effect of TOR content on the mechanical, dynamic mechanical and thermal stability of the rubber/plastic blends was characterized by UTM, DMTA, and TGA. On the addition of trans-polyoctylene rubber(TOR) to the rubber phase, there was a decrease in compression set and increase in tensile properties, hardness and dynamic properties as well as thermal stability or the elastomeric blends. Improvements in the properties were believed to be due to an increase in crosslink density of the rubber phase and increase in homogeneity of the blends.

  • PDF

Magnetorheological Elastomer Based on Reactive Blend of Maleic Anhydride Grafted Chloroprene Rubber and Epoxidized Natural Rubber (말레무수물로 개질된 클로로프렌 고무와 에폭시화 천연고무의 반응 블렌드에 기초한 자기유변 탄성체)

  • Choi, Jinyoung;Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • Self vulcanizable blend system for magnetorheological elastomer (MRE) has been studied by dispersing magneto responsible particle (MRP) on elastomeric matrix. Chloroprene rubber was modified with maleic anhydride (MAH) using heat and pressure which is called dynamic maleation process. The optimum graft ratio of MAH was found at 10 phr contents and reaction temperature of $100^{\circ}C$. This could be confirmed by FT-IR analysis. Epoxided natural rubber (ENR) was blended with modified CR-g-MAH for self vulcanization. The optimum amounts of ENR was 30 wt% in terms of scorch time and curing rate. MRE was manufactured by electromagnetic equipment and orientation of MRE was confirmed by SEM. Finally, it was found that the tensile strength of anisotropic-MRE was higher than that of isotropic-MRE and the hardness was reverse.

Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes (신축성 금속 나노선 압저항 전극 기반 로젯 스트레인 센서)

  • Kim, Kang-Hyun;Cha, Jae-Gyeong;Kim, Jong-Man
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.835-843
    • /
    • 2018
  • In this work, we report a delta rosette strain sensor based on highly stretchable silver nanowire (AgNW) percolation piezoresistors. The proposed rosette strain sensors were easily prepared by a facile two-step fabrication route. First, three identical AgNW piezoresistive electrodes were patterned in a simple and precise manner on a donor film using a solution-processed drop-coating of the AgNWs in conjunction with a tape-type shadow mask. The patterned AgNW electrodes were then entirely transferred to an elastomeric substrate while embedding them in the polymer matrix. The fabricated stretchable AgNW piezoresistors could be operated at up to 20% strain without electrical or mechanical failure, showing a maximum gauge factor as high as 5.3, low hysteresis, and high linearity ($r^2{\approx}0.996$). Moreover, the sensor responses were also found to be highly stable and reversible even under repeated strain loading/unloading for up to 1000 cycles at a maximum tensile strain of 20%, mainly due to the mechanical stability of the AgNW/elastomer composites. In addition, both the magnitude and direction of the principal strain could be precisely characterized by configuring three identical AgNW piezoresistors in a delta rosette form, representing the potential for employing the devices as a multidimensional strain sensor in various practical applications.

Electrical Properties and Characterization of 3-Methylthiophene Impregnated Polyurethane films (3-Methylthiophene이 함유된 폴리우레탄 필름의 전기적 특성 연구)

  • Choi, Sei-Young;Choi, Kyo-Chang;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.234-243
    • /
    • 2004
  • The elastomeric and conductive polyurethane (PU) films were prepared by poly(propylene glycol) (PPG), toluene 2,4-diisocyanate, 3-methylthiophene (3-MT) at various preparation conditions, such as the reaction time, the $FeCl_3$ concentration, the weight ratio of the 3-MT to PU and the reaction temperature for the diffusion-oxidative reaction. The conductive poly (3-methylthiophene) (PMT) layers via the diffusion-oxidative reaction of 3-MT and ferric chloride were formed by immersing the film in organic solution of $FeCl_3$/ethyl acetate. The preparation conditions greatly affected the electrical conductivity of the 3-MT/PU composite. The effects of the reaction time and temperature on morphology and surface free energy were investigated by scanning electron microscopy (SEM) analysis and contact angle measurement, respectively. The conductivity of the composite was as high as 42 S/cm.

Preparation and Characterization of Elastomeric Conductor based on Magnetite and Chloroprene Rubber ($Fe_3O_4$와 Chloroprene Rubber (CR)를 기초로한 탄성 전도체의 제조 및 특성연구)

  • Choi, Kyo-Chang;Lee, Eun-Kyoung;Choi, Seo-Young
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.81-87
    • /
    • 2003
  • In this work, $Fe_3O_4$ (magnetite), conductive filler was prepared from $FeCl_2{\cdot}4H_2O,\;(CH_2)_6N_4$ (hexamethylene tetramine), and $NaNO_2$, followed by mixing with crystallizable chloroprene rubber(CR). The influence of conductive filler content on the properties of the conductive composite was studied and temperature dependence of the electrical conductivity (${\sigma}$) was also investigated. It is found that the percolation threshold concept holds true for the conductive particle-filled composite where ${\sigma}$ indicates a nearly sharp increase when the fraction of magnetite in the mixture exceeds 27%. The temperature dependence of ${\sigma}$ is thermally activated blelow or at the $P_c$. Magnetite acts as reinforcement and conductive filler for CR rubber. Moreover, it is shown that the composite with magnetite of 50 phr gives the most significant mechanical properties for tensile strength and elongation at break, which is due to the formation of optimum physical interlock and crosslinking. The results of 100%, 200%, and 300% moduli suggest that the moduli are related with reinforcement effect of magnetite and viscosity of the blend.

Mechanical and Electrical Properties of Impact Polypropylene Ternary Blends for High-Voltage Power Cable Insulation Applications (고전압 전력케이블 절연체 응용을 위한 임팩트 폴리프로필렌 기반 3성분계 블렌드의 기계적 및 전기적 특성에 대한 연구)

  • Lee, Seong Hwan;Kim, Do-Kyun;Hong, Shin-Ki;Han, Jin Ah;Han, Se Won;Lee, Dae Ho;Yu, Seunggun
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.127-133
    • /
    • 2022
  • Polypropylene (PP) has been received great attention as a next-generation high-voltage power cable insulation material that can replace cross-linked polyethylene (XLPE). However, the PP cannot be used alone as an insulation material because of its high elastic modulus and vulnerability to impact, and thus is mainly utilized as a form of a copolymer with rubber phases included in the polymerization step. In this paper, a soft PP-based blend was prepared through melt-mixing of impact PP, polyolefin elastomer, and propylene-ethylene random copolymer. The elastic modulus and impact strength of the blend could properly be decreased or increased, respectively, by introducing elastomeric phases. Furthermore, the blends showed a high storage modulus even at a temperature of 100℃ or higher at which the XLPE loses its mechanical properties. In addition, the blend was found to be effective in suppressing the space charge compared to the pristine PP as well as XLPE.