Synthesis, Properties and Applications of Polyamide Thermoplastic Elastomers

폴리아미드계 열가소성탄성체의 합성, 특성 및 응용

  • 이강석 (한양대학교 바이오나노학과) ;
  • 최명찬 (한양대학교 바이오나노학과) ;
  • 김성만 (한양대학교 바이오나노학과) ;
  • 장영욱 (한양대학교 바이오나노학과)
  • Received : 2010.07.12
  • Accepted : 2010.07.29
  • Published : 2010.09.30

Abstract

Thermoplastic elastomers (TPEs) exhibit both elastomeric behaviors at used temperature range and melt processibility. Polyamide based thermoplastic elastomers (TPAEs) are segmented block copolymers with hard blocks consisting of polyamide segments, while the soft blocks usually consist of flexible segments having a low glass transition temperature. The TPAE is one of the engineering TPEs possessing high thermal stability, excellent mechanical performances, chemical resistance and excellent processibility. And they showed wide range of physical and functional properties depending upon the structure of each segment and their relative contents and the hybridization with various inorganic particles. In this review, synthesis, properties, and possible applications of TPAEs are summarized.

열가소성 탄성체(TPE)는 사용 온도 범위에서 일반 열경화성 고무와 같은 고무 탄성을 지니면서 용융 가공이 가능한 친환경 소재로써 산업 전반에 걸쳐 활용도가 꾸준히 증가하고 있다. 폴리아미드계 TPE (TPAE)는 하드세그멘트가 엔지니어링 플라스틱인 폴리아미드로 이루어져 있고, 소프트 세그먼트가 유리전이온도가 낮은 폴리에테르로 이루어진 다중 블록 공중합체로써 우수한 기계적 물성, 내화학성, 내열성 및 가공성을 나타낸다. 이러한 폴리아미드계 TPE는 하드 세그먼트와 소프트 세그먼트의 구조 및 상대적 조성에 따라 탄성체에서부터 연질 폴리아미드까지의 광범위한 특성이 발현되며, 또한, 다양한 무기 입자와의 하이브리드화를 통한 기능성 소재로의 활용이 기대되는 소재이다. 본 보문에서는 이러한 TPAE를 합성 할 수 있는 중합 방법과 특성 및 응용 분야에 대해 정리하였다.

Keywords

References

  1. T. Uenosono and T. Imanishi, "Prepartion of polyether-polyester- polyamide elastomers with good heat and chemical resistance", JP Patent 63,183,929 (1987).
  2. T. Matsuo, "Production of polyether ester amide elastomer", JP Patent 63,035,625 (1986).
  3. N. Yui, J. Tanaka, K. Sanui, and N. Ogata, "Polyether-segmented polyamides as a new designed antithrombogenic material: Microstructure of poly(propylene oxide)-segmented nylon 610", Makromol. Chem., 185, 2259 (1984). https://doi.org/10.1002/macp.1984.021851103
  4. T. Chiaki, N. Shinobu, and K. Makoto, "Polyamide elastomers", JP Patent 59,207,930 (1983).
  5. F. X. Lin, Y. F. Zou, X. L. Luo, Y. H. Huang, and G. F. Zhou, "Study on the condensed state structure of polyamide 1010- poly(tetramethylene oxide) multiblock copolymers", Polym. Mater. Sci. Eng., 8, 50 (1992).
  6. T. Chiaki, N. Shinobu, and K. Makoto, "Aliphatic polyamide elastomers", JP Patent 59,213,724 (1983).
  7. R. J. Gaymans, E. Roerdink, P. J. F. Schwering, and E. Walch, "Manufacture of segmented block copolymer thermoplastic elastomers", EU Patent Appl., 360, 311 (1988).
  8. R. J. Gaymans, P. Schwering, and J. L. de Haan, "Nylon 46-polytetramethylene oxide segmented block copolymers", Polymer, 30, 974 (1989). https://doi.org/10.1016/0032-3861(89)90066-9
  9. P. F. van Hutten, E. Walch, A. H. M. Veeken, and R. J. Gaymans, "Segmented block copolymers based on polyamide-46 and poly(propylene oxide)", Polymer, 31, 524 (1990). https://doi.org/10.1016/0032-3861(90)90397-H
  10. K. Keiji and T. Chiaki, "Polyamide-polyester-polyether rubber", JP Patent 58,206,627 (1982).
  11. Y. Imai, M. Kajiyama, S. Ogata, and M. Kakimoto, "Synthesis and properties of multiblock copolymers based on poly(oxyethylene) s and aromatic polyamides", Polymer J., 16, 267 (1984). https://doi.org/10.1295/polymj.16.267
  12. M. C. E. J. Niesten, J. Feijen, and R. J. Gaymans, "Synthesis and properties of segmented copolymers having aramid units of uniform length", Polymer, 41, 8457 (2000).
  13. R. J. Gaymans and J. L. de Haan, "Segmented copolymers with poly(ester amide) units of uniform length: synthesis", Polymer, 34, 4360 (1993). https://doi.org/10.1016/0032-3861(93)90202-L
  14. L. Guang and R. J. Gaymans, "Polyesteramides with mixtures of poly(tetramethylene oxide) and 1,5-pentanediol", Polymer, 38, 4891 (1997). https://doi.org/10.1016/S0032-3861(97)00016-5
  15. J. M. Huet and E. Marechal, "Synthesis and study of the polycondensate sequences comprising a sequence of poly($\varepsilon$ -caprolactone). II", Eur. Polym. J., 10, 771 (1974). https://doi.org/10.1016/0014-3057(74)90128-1
  16. K. Otitsu and K. Murabayashi, "Polycaprolactone-polyamide elastomer impact absorbers", JP Patent 61,171,731 (1985).
  17. H. Okushita and T. Muramutsu, "Heat resistant flexible polyamide- polycarbonate block elastomers", EP Patent 1253165 (2001).
  18. M. Miyamoto, H. Nakanishi, and T. Tanaka, "Thermally stable and flexible polyolefin-polyamides", JP Patent 2,113,026 (1988).`
  19. H. B. Ozgun, V. Kubanek, J. Kralicek, and B. Veruovic, "Synthesis of block copolymers based on polycaprolactam-polybutadiene", Eur. Polym. J., 22, 1009 (1986). https://doi.org/10.1016/0014-3057(86)90083-2
  20. R. J. Zdrahala, E. M. Firer, and J. F. Fellers, "Block copolymers of poly(m- phenylene isophthalamide) and poly(ethylene oxide) or polydimethylsiloxane: Synthesis and general characteristics", J. Polym. Sci. Polym. Chem. Ed., 15, 689 (1977). https://doi.org/10.1002/pol.1977.170150316
  21. T. Otsuki and M.-A. Kakimoto, and Y. Imai, "Synthesis of multi-block copolymers based on poly(oxyethylene)dicarboxylic acids and polyamides by the diisocyanate method", Makromol. Chem. Rapid Commun., 8, 637 (1987). https://doi.org/10.1002/marc.1987.030081210
  22. T. Otsuki, M.-A. Kakimoto, and Y. Imai, "Synthesis and properties of multi-block copolymers based on polyoxyethylene and polyamides by diisocyanate method", J. Appl. Polym. Sci., 40, 1433 (1990). https://doi.org/10.1002/app.1990.070400902
  23. L. Castaldo, G. Maglio, and R. Palumbo, "Synthesis of polyamide- polyether block copolymers", J. Polym. Sci. Polym. Lett. Ed., 16, 643 (1978). https://doi.org/10.1002/pol.1978.130161206
  24. F. de Candia, V. Petrocelli, R. Russo, G. Maglio, and R. Palumbo, "Synthesis of physical behavior of poly(amideether) block copolymers", Polymer, 27, 797 (1986). https://doi.org/10.1016/0032-3861(86)90141-2
  25. M. Acevedo and A. Fradet, "Study of bulk chain coupling reactions. II. Reaction between bisoxazolones and amine-terminated polyether: synthesis of polyether-block polyamides", J. Polym. Sci. Polym. Chem. Ed., 31, 1579 (1993). https://doi.org/10.1002/pola.1993.080310628
  26. H. Okamoto and Y. Okushita, "Poly(ether imide amides)", JP Patent 60,158,222 (1984).
  27. P. Foy, C. Jungblut, and G. Deleens, "Polyether-ester amides as a product for molding or extrusion, FR Patent 2,273,021 (1974).
  28. S. Mumcu, K. Burzin, R. Feldmann, and R. Feinaner, "Copolyetheramide from laurinlactam, 1,10-decanedicarboxylic acid and $\alpha$, $\omega$-dihydroxy-(polytetrahydro furan)", Angew. Makromol. Chem., 74, 49 (1978). https://doi.org/10.1002/apmc.1978.050740104
  29. A. Boulares, M. Tessier, and E. Marechal, "Synthesis and characterization of poly(copolyethers-block-polyamides) II. Characterization and properties of multi block copolymers", Polymer, 41, 3561 (2000). https://doi.org/10.1016/S0032-3861(99)00526-1
  30. A. Boulares, M. Tessier, and E. Marechal, "Synthesis and characterization of poly(copolyethers-block-polyamides) I. Structural study of polyether precursors", J. Macromol. Sci. Pure Appl. Chem., A35, 933 (1998).
  31. D. Judas and J.-M. Sage, "Polymers comprising both polyamide- diacid/polyether diol blocks and polyamide-diacid/polyetherdiamine blocks, and their preparations" US patent 5,574,128A (1996).
  32. L. Z. Chung, D. L. Kou, A. T. Hu, and H. B. Tsai, "Block copolyetheramides: Synthesis and morphology of nylon6 based block copolyetheramides", J. Polym. Sci. Polym. Chem. Ed., 30, 951 (1992). https://doi.org/10.1002/pola.1992.080300529
  33. J. P. Sheth, J. Xu, and G. L. Wilkes, "Solid state structure-property behavior of semicrystalline poly(ether-block-amide) thermoplastic elastomers", Polymer, 44, 743 (2003). https://doi.org/10.1016/S0032-3861(02)00798-X
  34. V.I. Bondar, B. D. Freeman, and I. Pinnau, "Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci. Polym. Phys. Ed., 37, 2463 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2463::AID-POLB18>3.0.CO;2-H
  35. S. B. Hamouda, Q. T. Nguyen, D. Langevin, C. Chappey, and S. Roudesli, "Polyamide 12-polytetramethylene oxide block copolymer membranes with silver nanoparticles - synthesis and water permeation properties", Reac. Func. Polym., 67, 893 (2007). https://doi.org/10.1016/j.reactfunctpolym.2007.05.014
  36. J. H. Kim and Y. M. Lee, "Gas permeation properties of poly(amide6-b-ethylene oxide)-silica hybrid membranes", J. Memb. Sci., 193, 209 (2001). https://doi.org/10.1016/S0376-7388(01)00514-2
  37. A. Car, C. Stropnik, W. Yave, and K.-V. Peinemann, "Pebax/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases", Sepn. Purif. Technol., 62, 110 (2008). https://doi.org/10.1016/j.seppur.2008.01.001
  38. R. S. Murali, S. Sridhar, T. Sankarshana, and Y. V. L. Ravikumar, "Gas permeation behavior of Pebax1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes", Ind. Eng. Chem. Res., 49, 6530 (2010). https://doi.org/10.1021/ie9016495
  39. J. C. Chen, X. S. Feng, and A. S. Penlidis, "Gas permeation through poly(ether-b-amide) (PEBAX 2533) block copolymer membranes", Sepn. Sci. Technol., 39, 149 (2004).
  40. S. Sridhar, R. Suryamurali, B. Smitha, and T. M. Amabhavi, "Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation", Colloids Surf. A: Physicochem. Eng. Asp., 297, 267 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.054
  41. J. Potreck, K. Nijmeijer, T. Kosinski, and M. Wessling, "Mixed water vapor/gas transport through the rubbery polymer PEBAX 1074", J. Memb. Sci., 338, 11 (2009). https://doi.org/10.1016/j.memsci.2009.03.051
  42. S. Sridhar, B. Smitha, R. Suryamurali, and T. M. Amabhavi, "Synthesis, characterization and gas permeability of an activated carbon-loaded PEBAX 2533 membrane", Designed Monomers & Polymers, 11, 17 (2008). https://doi.org/10.1163/156855508X292392