• 제목/요약/키워드: Elastic-Plastic Strain

검색결과 434건 처리시간 0.028초

Influence of high-cycle fatigue on the tension stiffening behavior of flexural reinforced lightweight aggregate concrete beams

  • Chen, How-Ji;Liu, Te-Hung;Tang, Chao-Wei;Tsai, Wen-Po
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.847-866
    • /
    • 2011
  • The objective of this study was to experimentally investigate the bond-related tension stiffening behavior of flexural reinforced concrete (RC) beams made with lightweight aggregate concrete (LWAC) under various high-cycle fatigue loading conditions. Based on strain measurements of tensile steel in the RC beams, fatigue-induced degradation of tension stiffening effects was evaluated and was, compared to reinforced normal weight concrete (NWC) beams with equal concrete compressive strengths (40 MPa). According to applied load-mean steel strain relationships, the mean steel strain that developed under loading cycles was divided into elastic and plastic strain components. The experimental results showed that, in the high-cycle fatigue regime, the tension stiffening behavior of LWAC beams was different from that of NWC beams; LWAC beams had a lesser reduction in tension stiffening due to a better bond between steel and concrete. This was reflected in the stability of the elastic mean steel strains and in the higher degree of local plasticity that developed at the primary flexural cracks.

굽힘피로 하중을 받는 배관의 피로균열 발생수명 예측 (Crack Initiation Life Analysis in Notched Pipe Under Cyclic Bending Loads)

  • 곽상록;이준성;김영진;박윤원
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1528-1534
    • /
    • 2001
  • In order to improve Leak-Be(ore-Break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result.

Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression

  • Zhang, Xianggang;Deng, Dapeng;Lin, Xinyan;Yang, Jianhui;Fu, Lei
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.627-635
    • /
    • 2019
  • In order to study the axial compression performance of sand-lightweight concrete-filled steel tube (SLCFST) stub columns, three circular SLCFST (C-SLCFST) stub column specimens and three SLCFST square (S-SLCFST) stub column specimens were fabricated and static monotonic axial compression performance testing was carried out, using the volume ratio between river sand and ceramic sand in sand-lightweight concrete (SLC) as a varying parameter. The stress process and failure mode of the specimens were observed, stress-strain curves were obtained and analysed for the specimens, and the ultimate bearing capacity of SLCFST stub column specimens was calculated based on unified strength theory, limit equilibrium theory and superposition theory. The results show that the outer steel tubes of SLCFST stub columns buckled outward, core SLC was crushed, and the damage to the upper parts of the S-SLCFST stub columns was more serious than for C-SLCFST stub columns. Three stages can be identified in the stress-strain curves of SLCFST stub columns: an elastic stage, an elastic-plastic stage and a plastic stage. It is suggested that AIJ-1997, CECS 159:2004 or AIJ-1997, based on superposition theory, can be used to design the ultimate bearing capacity under axial compression for C-SLCFST and S-SLCFST stub columns; for varying replacement ratios of natural river sand, the calculated stress-strain curves for SLCFST stub columns under axial compression show good fitting to the test measure curves.

A NEW FEEDBACK TECHNIQUE FOR TUNNEL SAFETY BY USING MEASURED DISPLACEMENTS DURING TUNNEL EXCAVATION

  • Sihyun PARK;Yongsuk SHIN;Sungkun PARK
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.432-439
    • /
    • 2009
  • This research project was carried out to develop the technique to assess quantitatively and rapidly the stability of a tunnel by using the measured displacement at the tunnel construction site under excavation. To achieve this purpose, a critical strain concept was introduced and applied to an assessment of a tunnel under construction. The new technique calculates numerically the strains of the surrounding ground by using the measured displacements during excavation. A numerical practical system was developed based on the proposed analysis technique in this study. The feasibility of the developed analysis module was verified by incorporating the analysis results obtained by commercial programs into the developed analysis module. To verify the feasibility of the developed analysis module, analysis results of models both elastic and elasto-plastic grounds were investigated for the circular tunnel design. Then the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using critical strain concept. It was verified that stress conditions of in-situ ground and ground material properties were accurately assessed by inputting the calculated displacement obtained by commercial program into this module for the elastic ground. However for the elasto-plastic ground, analysis module can reproduce the initial conditions more closely for the soft rock ground than for the weathered soil ground. The stability of tunnels evaluated with two types of strains, that is, the strains obtained by dividing the crown displacement into a tunnel size and the strains obtained by using the analysis module. From this study, it is confirmed that the critical strain concept can be fully adopted within the engineering judgment in practical tunnel problems and the developed module can be used as a reasonable tool for the assessment of the tunnel stability in the field.

  • PDF

Analysis of cavity expansion based on general strength criterion and energy theory

  • Chao Li;Meng-meng Lu;Bin Zhu;Chao Liu;Guo-Yao Li;Pin-Qiang Mo
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.9-19
    • /
    • 2024
  • This study presents an energy analysis for large-strain cavity expansion problem based on the general strength criterion and energy theory. This study focuses on the energy dissipation problem during the cavity expansion process, dividing the soil mass around the cavity into an elastic region and a plastic region. Assuming compliance with the small deformation theory in the elastic region and the large deformation theory in the plastic region, combined with the general strength criterion of soil mass and energy theory, the energy dissipation solution for cavity expansion problem is derived. Firstly, from an energy perspective, the process of cavity expansion in soil mass is described as an energy conversion process. The energy dissipation mechanism is introduced into the traditional analysis of cavity expansion, and a general analytical solution for cavity expansion related to energy is derived. Subsequently, based on this general analytical solution of cavity expansion, the influence of different strength criterion, large-strain, expansion radius, cavity shape and characteristics of soil mass on the stress distribution, displacement field and energy evolution around the cavity is studied. Finally, the effectiveness and reliability of theoretical solution is verified by comparing the results of typical pressure-expansion curves with existing literature algorithms. The results indicate that different strength criterion have a relatively small impact on the displacement and strain field around the cavity, but a significant impact on the stress distribution and energy evolution around the cavity.

Local & Global 모델을 이용한 용접구조물 변형 해석에 관한 연구 (The Analysis of Welding Deformation in Large Welded Structure by Using Local & Global Model)

  • 장경복;조시훈;장태원
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.25-29
    • /
    • 2004
  • Some industrial steel structures are composed by components linked by several welding joints to constitute an assembly. The main interest of assembly simulation is to evaluate the global distortion of welded structure. The general method, thermo-elasto-plastic analysis, leads to excessive model size and computation time. In this study, a simplified method called "Local and Global approach" was developed to break down this limit and to provide a accurate solution for distortion. Local and global approach is composed of 3 steps; 1) Local simulation of each welding joint on a dedicated mesh (usually very fine due to high thermal gradients), taking into account for the non linearity of the material properties and the moving heat source. 2) Transfer to the global model of the effects of the welding joints by projection of the plastic strain tensors. 3) Elastic simulation to determine final distortions in global model. The welding deformation test for mock-up structure was performed to verify this approach. The predicted welding distortion by this approach had a good agreement with experiment results.

Fracture mechanics analysis of multipurpose canister for spent nuclear fuels under horizontal/oblique drop accidents

  • Jae-Yoon Jeong;Cheol-Ho Kim;Hune-Tae Kim;Ji-Hye Kim;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4647-4658
    • /
    • 2023
  • In this paper, elastic-plastic fracture mechanics analysis is performed to determine the critical crack sizes of the multipurpose canister (MPC) manufactured using austenitic stainless steel under dynamic loading conditions that simulate drop accidents. Firstly, dynamic finite element (FE) analysis is performed using Abaqus v.2018 with the KORAD (Korea Radioactive Waste Agency)-21 model under two drop accident conditions. Through the FE analysis, critical locations and through-thickness stress distributions in the MPC are identified, where the maximum plastic strain occurs during impact loadings. Then, the evaluation using the failure assessment diagram (FAD) is performed by postulating an external surface crack at the critical location to determine the critical crack depth. It is found that, for the drop cases considered in this paper, the principal failure mechanism for the circumferential surface crack is found to be the plastic collapse due to dominant high bending axial stress in the thickness. For axial cracks, the plastic collapse is also the dominant failure mechanism due to high membrane hoop stress, followed by the ductile tearing analysis. When incorporating the strain rate effect on yield strength and fracture toughness, the critical crack depth increases from 10 to 20%.

동적하중 하에서의 강도적 불균질부를 갖는 용접이음재의 강도 및 파괴 특성 (Characteristics of Strength and Fracture in Strength Mismatched Joint by Dynamic Loading)

  • 안규백;;;방한서
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.55-63
    • /
    • 2003
  • Welded joint generally has heterogeneity of strength, material, and fracture toughness and it is important to understand the characteristics of material strength and fracture of welded joint considering heterogeneous effect. Characteristics of strength and fracture of an undermatched joint under dynamic loading was studied by round-bar tension tests and thermal elastic-plastic analyses in this paper. The strength and fracture of the undermatched joints should be evaluated based on the effects of the strain rate and the temperature including temperature rise during the dynamic loading. The differences of fracture characteristics like such as ductile-to-brittle transition behavior are well precisely explained from the stress-strain distribution obtained by numerical analysis.

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

Distortion and Dilatatioin in the Tensie Failure of Paper

  • Park, Jong-Moon;James L. Thorpe
    • 펄프종이기술
    • /
    • 제31권5호
    • /
    • pp.73-85
    • /
    • 1999
  • Yield and fracture are separated in the tensile failure of paper. Failure in the machine direction of photocopy paper is contrasted with failure in the cross-machine direction . The ratios of distortion (shape change) to dilatation (volume change) for individual elements at yield and fracture are described. The ratios of distortion to dilatation are measured and compared to predicted values of the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density factor, samples are prepared from machine direction to cross-machine direction in 15 degree intervals. the strain energy density of individual elements are obtained by the integration of stress from finite element analysis with elastic plus plastic strain energy density theory. Poison's ratio and the angle from the principal material direction have a great effect ion the ratio fo distortion to dilatation in paper. During the yield condition, distortion prevails over dilatation . At fracture, dilatation is at a maximum.

  • PDF