• 제목/요약/키워드: Elastic-Plastic Deformation

검색결과 481건 처리시간 0.021초

축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석 (Determination of Elastic Recovery for Axi-Symmetric Forged Products)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF

고정밀도 조립을 위한 용접 변형의 해석에 관한 연구 (A Study on the Simulation of Welding Deformation for accurate Assembling)

  • 성기찬;장경복;정진우;강성수
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.129-134
    • /
    • 2001
  • It is essential to predict the welding deformation at assembly stage, to increase productivity through mechanization and automation effectively. A practical analysis method appled for production engineering was proposed to simulate the deformation of arc welding, with an analytical model using finite element method solving thermal-elastic-plastic behavior. In this research, for accurate assembling, 3-D thermal-elastic-plastic finite element model is used to simulate the out-of-plane deformation caused by arc welding. Efforts have been made to find out the efficient method to improve the reliability and accuracy of the numerical calculation. Each of theories of small and large deformation is applied in solving 3-D thermal-elastic-plastic problem to compare with their efficiency about calculation imes and solution accuracy. When solid elements are used in a bending problem of a plate, phenomenon that the predictive deformation is more than that of actual survey is observed. To prevent this phenomenon, reduced integration method for element is employed instead of full integration that is generally used in 3-D thermal-elastic-plastic analysis.

  • PDF

彈塑性 疲勞균열進展과 J積分 (Elastic-Plastic Fatigue Crack Growth and J Integral)

  • 송지호;김일현;박영조
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.26-33
    • /
    • 1984
  • Constant-load-amplitude fatigue crack growth tests were carried out on 5083-0 aluminum alloy under elastic and elastic-plastic conditions. Crack length, crack closure and monotonic fatigue deformation were measured by Kikukawa's unloading elastic compliance monitoring technique and elastic-plastic fatigue crack growth rates were analysed in terms of J integral. Elastic-plastic fatigue crack growth rates can be well expressed by effective cyclic J integral until general yielding occurs. Beyond general yielding, monotonic fatigue deformation becomes significant and growth rates cannot be characterized by a single parameter of effective cyclic J integral alone. However, introducing one more parameter, maximum J integral J$_{max}$ to account for the effect of monotonic fatigue deformation, can explain fatigue crack growth behavior beyond general yielding.

총열 및 포신의 팽창 변형에 관한 연구 (A Study on the Expansive Deformation of Rifle Barrel and Gun Barrel)

  • 김동욱;이재영;강영철
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.7-14
    • /
    • 2000
  • In this paper, the possibility of plastic deformation of rifle and gun barrels is studied through the numerical methods. When a rifle or tank gun is fired, the expansive deformation of the barrel can occur by the explosive pressure and the thermal effect. Using the ABAQUS program, the stresses and displacements are computed for the elastic and elastic-plastic material property, and the possibility of plasticity deformation is investigated. In conclusion, rifle and tank gun barrel the plastic deformation occurred in some parts of the barrel

  • PDF

탄소성 변형구배텐서의 가산분해와 곱분해에 대한 새로운 역학적 이해 (A New Interpretation on the Additive and Multiplicative Decompositions of Elastic-Plasmic Deformation Gradient Tensor)

  • 남용윤;신종계
    • 대한조선학회논문집
    • /
    • 제33권3호
    • /
    • pp.94-102
    • /
    • 1996
  • 유한변형문제에서 변형구배텐서를 탄소성 성분으로 분해하기 위한 가산분해와 곱분해방법에 대해서 설명하고, 이 두 방법에서 파생되는 역학량들의 의미와 그 차이점을 보였다. 변형구배에 대한 기존의 곱분해와 가산분해로 얻어지는 변형속도구배는 가산적으로 표현되지 않으며, 소성변형속도구배는 탄성변형의 영향을 받고 있다. 본 연구에서는 공축소성 가정을 도입하고, 수정된 곱분해를 통하여 소성변형속도구배가 탄성변형에 영향을 받지 않는 가산적인 변형속도 구배를 얻었다.

  • PDF

이종재료 금속조인트의 굽힘에 의한 잔류응력 해석 (Residual Stress Analysis in Bi-material Metal Joint under Bending Moment by Finite Element Method)

  • 백태현;정걸;박태근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.448-451
    • /
    • 2005
  • It was observed that after unloading or removal of the load from the specimen subjected to bending stress, partial or full elastic spring back occurred and considerable stresses have resulted while plastic deformation was considered. ABAQUS is a suite of powerful engineering simulation programs, based on the finite element method. In this paper, it was used as the main tool to analyze elastic and plastic deformations of hi-material metal joint. In the case of elastic deformations, the results were comparable to the theoretical data. Plastic deformations and residual stresses of hi-material metal joint under bending moment were obtained by ABAQUS; where the theory needs to be studied and improved further to verify the results.

  • PDF

탄소성 내연적 유한요소법을 이용한 평면 이방성 박판의 성형공정해석 (Elastic-Plastic Implicit Finite Element Method Considering Planar Anisotropy for Complicated Sheet Metal Forming Processes)

  • 윤정환;김종봉;양동열;정관수
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.233-245
    • /
    • 1998
  • A new approach has been proposed for the incremental analysis of the nonsteady state large deformation of planar anisotropic elastic-plastic sheet forming. A mathematical brief review of a constitutive law for the incremental deformation theory has been presented from flow theory using the minimum plastic work path for elastic-plastic material. Since the material embedded coordinate system(Lagrangian quantity) is used in the proposed theory the stress integration procedure is completely objective. A new return mapping algorithm has been also developed from the general midpoint rule so as to achieve numerically large strain increment by successive control of yield function residuals. Some numerical tests for the return mapping algorithm were performed using Barlat's six component anisotropic stress potential. Performance of the proposed algorithm was shown to be good and stable for a large strain increment, For planar anisotropic sheet forming updating algorithm of planar anisotropic axes has been newly proposed. In order to show the effectiveness and validity of the present formulation earing simulation for a cylindrical cup drawing and front fender stamping analysis are performed. From the results it has been shown that the present formulation can provide a good basis for analysis for analysis of elastic-plastic sheet metal forming processes.

  • PDF

재료의 나노인덴테이션 변형 거동과 3차원 유한요소해석 (Deformation Behaviors of Materials during Nanoindentation Test and Simulation by Three-Dimensional Finite Element Analysis)

  • 김지수;양현윤;윤존도;조상봉
    • 한국재료학회지
    • /
    • 제14권6호
    • /
    • pp.436-442
    • /
    • 2004
  • Elastic and plastic deformation behaviors of the high purity aluminum and the silica glass were studied using nanoindentation and finite element analysis(FEA) techniques. Berkovich- and cone-type indenters were used for the nanoindentation test. Deformation behaviors and nanoindent profiles of elastic, elastic-plastic or plastic materials were clearly visualized by FEA simulation. Effects of the penetration depth and strain hardening on the deformation behavior were examined. Pile-up and sink-in behaviors were studied by using FEA technique. Degree of pile-up or sink-in was found to be a function of the ratio of elastic modulus to yield strength of materials. FEA was found to be an effective method to study deformation behaviors of materials under nanoindentation, especially in the case when pile-up or sink-in phenomena occurred.

선반으로 보링가공 할 때 척킹력이 가공 정도에 미치는 영향 (Influence of Chucking Forces upon the Accuracy of Circular Hole in Boring Process on the Turning)

  • 이상수;강신길;전영석
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.58-64
    • /
    • 2008
  • The cutting process of materials is accompanied with the elastic and plastic deformation due to chucking forces in the boring process of thin holes on the turning. Upon removal of chucking forces at the end of process, the original shape is remained in the plastic deformation; on the other hand, it is modified in the elastic deformation due to spring back. Fixing materials by chucks on the turning has influence on roundness because the process is conducted with unbalanced distribution load induced from the fixing of three jaws. Moreover, the amount of spring back depends on the magnitude of fixing forces. We studied the change of roundness according to fixing forces as well as the method to reduce the influence of chucking forces.

소성변형특성을 이용한 사실적인 직물 시뮬레이션 (Realistic Cloth Simulation using Plastic Deformation)

  • 오동훈;정문렬;송창근;이종완
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제12권3호
    • /
    • pp.208-217
    • /
    • 2006
  • 본 논문은 소성변형(plastic deformation)특성을 갖는 직물의 움직임을 시뮬레이션하는 기법을 제안한다. 소성은 탄성과 반대되는 개념으로, 물질이 외부의 힘에 의해 변형되었을 때, 초기상태로 완전히 회복되지 못하는 성질이다. 직물은 파티클 모델(particle model)을 이용하여 모델링하며, 파티클간의 상호작용은 바로 인접한 파티클간의 순차연결과 한 파티클 건너에 있는 파티클간의 교차연결을 설정함으로써 표현한다. 순차연결은 직물의 압축과 인장변형을, 교차연결은 직물의 굽힙변형을 표현한다. 연결은 스프링으로 모델링하는데, 순차연결은 탄성스프링으로, 교차연결은 변형정도에 따라, 탄성스프링 또는 소성스프링으로 모델링한다. 본 논문은 기존의 파티클 모델에서 사용하는 탄성스프링에 소성스프링을 추가하여 직물의 소성변형 현상을 표현한 것이다. 그 결과, 굽힘주름과 영구변형된 구김주름, 그리고 주름이 직물 전체에 고루 분포되는 현상을 시뮬레이션할 수 있었다. 연결의 탄성스프링과 소성스프링을 모델링할 때 직물운동방정식 수치해법의 안정성을 보장하기 위해 직물 시스템의 강성 메트릭스 (stiffness matrix)가 indefinite이 되지 않도록 주의를 기울였다.