• Title/Summary/Keyword: Elastic-Plastic Creep

Search Result 57, Processing Time 0.023 seconds

Prediction of Creep Stress in High Temperature Piping System Using Elastic Follow-up Factor (탄성추종계수를 이용한 고온 배관계의 크리프 응력 예측)

  • Seo, Jun-Min;Youn, Gyo-Geun;Lee, Hyun-Jae;Oh, Young-Jin;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • When designing high temperature piping system, creep phenomena must be considered. Since ASME code does not provide detailed methods of design by rule (DBR) for high temperature piping, Finite element analysis should be performed. However, In the case of piping system with frequent design changes, creep analysis of the entire piping system for every change is ineffective and practically impossible. Therefore, based on elastic and elastic-plastic analysis, which takes a relatively short time, the creep stress is predicted by using elastic follow-up factor method provided in R5 code and plastic-creep analogy presented by Hoff. The predicted creep stress for a virtual piping system was compared with the creep analysis result and the two results showed similar stress relaxation tendency in time.

Estimation of Transient Creep C(t)-integrals for SE(B) Specimen Under Elastic-Plastic-Creep Conditions (탄성-소성-크리프 상태에서 SE(B) 시편의 천이크리프 C(t)-적분 평가)

  • Lee, Han-Sang;Je, Jin-Ho;Kim, Dong-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.851-857
    • /
    • 2015
  • In this paper, we estimate the time-dependent C(t) integrals under elastic-plastic-creep conditions. Finite-element (FE) transient creep analyses have been performed for single-edge-notched-bend (SEB) specimens. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step load. We consider both the same stress exponent and different stress exponents in the power-law creep and plasticity to elastic-plastic-creep behavior. To estimate the C(t) integrals, we compare the FE analysis results with those obtained using formulas. In this paper, we propose a modified equation to predict the C(t) integrals for the case of creep exponents that are different from the plastic exponent.

Estimation of Transient Creep Crack-tip Stress Fields for SE(B) specimen under Elastic-Plastic-Creep Conditions (탄성-소성-크리프 상태에서 SE(B) 시편의 천이크리프 균열 선단 응력장 평가)

  • Lee, Han-Sang;Je, Jin-Ho;Kim, Dong-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1001-1010
    • /
    • 2015
  • This paper estimates the time-dependent crack-tip stress fields under elastic-plastic-creep conditions. We perform Finite-Element (FE) transient creep analyses for a Single-Edge-notched-Bend (SEB) specimen. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step-load. We consider both the same stress exponent and different stress exponent in the power-law creep and plasticity to determine the elastic-plastic-creep behaviour. To estimation of the crack-tip stress fields, we compare FE analysis results with those obtained numerically formulas. In addition, we propose a new equation to predict the crack-tip stress fields when the creep exponent is different from the plastic exponent.

Estimation of C(t)-Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (II) - Elastic-Plastic-Creep - (복합응력이 작용하는 균열 배관에 대한 천이 크리프 조건에서의 C(t)-적분 예측 (II) - 탄-소성-크리프 -)

  • Song, Tae-Kwang;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1065-1073
    • /
    • 2009
  • In this paper, the estimation method of C(t)-integral for combined mechanical and thermal loads is proposed for elastic-plastic-creep material via 3-dimensional FE analyses. Plasticity induced by initial loading makes relaxation rate different from those produced elastically. Moreover, the interactions between mechanical and thermal loads make the relaxation rate different from those produced under mechanical load alone. To quantify C(t)-integral for combined mechanical and thermal loads, the simplified formula are developed by modifying redistribution time in existing work done by Ainsworth et al..

A Study on the Estimation of Viscoelastic Coefficients on Silicate Grouted Sands (물유리계 약액을 이용한 사질고결토의 점탄성 계수 산정에 관한 연구)

  • 강희복;김종렬;황성원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.605-612
    • /
    • 2002
  • The objective of this study is to investigate the behavior of Visco-Elasto-Plastic materials of Silicate Grouted Sands due to external load. Uniaxial compression strength of silicate grouted sands was increased accordingly with curing time, but it was almost unchanged after 7days. A series of uniaxial compression creep tests were peformed for $\sigma$/$\sigma$$\sub$f/ = 8%,16% and 24%. The tested Silicated Grouted Sands exhibits three types of strains : elastic, plastic, viscoelastic. It is seen that the magnitude of the instantaneous recoverable strains $\varepsilon$$\sub$r/(o) is approximately independent of the unloading time. In this tests, The total creep strains( elastic, plastic, viscoelastic) are proportional to the stress level. Based on the constant creep test results, relationships between the time and the creep compliance are developed.

  • PDF

Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times (크리프 균열개시 시간에 대한 구속효과 영향의 정량화)

  • Lee, Seung-Ho;Jung, Hyun-Woo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 2020
  • A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.

Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment (크리프 수명 평가를 위한 간략 크리프 응력 산출 방법론 분석)

  • Seo, Jun Min;Lee, Han Sang;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.703-709
    • /
    • 2017
  • Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the $M{\alpha}-tangent$ method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep stress and the alternative methods; however, in the $M{\alpha}-tangent$ method, the results were affected by the element size.

Reference Stress Based Stress Analysis for Local Creep Rupture of a T-pipe (참조응력법에 입각한 T-배관 국부 크리프 파단 평가를 위한 응력해석 사례연구)

  • Shin Kyu-In;Yoon Kee-Bong;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.873-879
    • /
    • 2006
  • To investigate applicability of the reference stress approach as simplified inelastic stress analysis to estimate local creep rupture, detailed finite element stress analyses of a T-piece pipe with different inner pressure and system loading levels are performed. The reference stresses are obtained from the finite element (FE) limit analysis based on elastic-perfectly-plastic materials, from which the local reference stress for creep rupture is determined from R5. The resulting inelastic stresses are compared with elastic stresses resulting from linear elastic FE calculations. Furthermore they are also compared with the stresses from full elastic-creep FE analyses. It shows that the stresses estimated from the reference stress approach compare well with those from full elastic-creep FE analysis, which are significantly lower than the elastic stress results. Considering time and efforts for full inelastic creep analysis of structures, the reference stress approach is shown to be a powerful tool for creep rupture estimates and also to reduce conservatism of elastic stress analysis significantly.

Method to Determine Elastic Follow-Up Factors to Predict C(t) for Elevated Temperature Structures (이차하중을 받는 고온 구조물의 C(t) 예측을 위한 탄성추종 계수 결정법)

  • Lee, Kuk-Hee;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.759-768
    • /
    • 2012
  • This paper proposes a method to determine the elastic follow-up factors for the $C(t)$-integral under secondary stress. The rate of creep crack growth for transient creep is correlated with the $C(t)$-integral. Elastic follow-up behavior, which occurs in structures under secondary loading, prevents a relaxation of stress during transient creep. Thus, both the values of $C(t)$ and creep crack growth increase as increasing elastic follow-up. An estimation solution for $C(t)$ was proposed by Ainsworth and Dean based on the reference stress method. To predict the value of $C(t)$ using this solution, an independent method to determine the elastic follow-up factors for cracked bodies is needed. This paper proposed that the elastic follow-up factors for $C(t)$ can be determined by elastic-plastic analyses using the plastic-creep analogy. Finite element analyses were performed to verify this method.

Engineering Estimation of Elastic-Plastic Fracture Parameter for Circumferential Surface Cracked Pipes: Part II (배관 원주방향 표면균열에 대한 탄소성 파괴 파라미터의 예측 (II))

  • Kim, Yun-Jae;Kim, Jin-Su;Kim, Young-Jin;Park, Yun-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.310-315
    • /
    • 2001
  • This paper provides validations of the reference stress based J and $C^*$ estimations, proposed in Part I, for inner, circumferential surface cracked pipes under internal pressure and global bending against detailed 3-D elastic-plastic and elastic-creep FE results. For this purpose, actual tensile properties of two typical stainless steels (TP304 and TP316) are used for elastic-plastic FE analyses and two realistic creep laws are used for elastic-creep FE analyses. For a total of twenty cases considered in this paper, agreements between the proposed reference stress based J and $C^*$ estimations and the FE results are excellent. More important aspect of the proposed estimations is that they can be used to estimate J and $C^*$ not only at the deepest point of the surface crack but also at an arbitrary point along the crack front.

  • PDF