• 제목/요약/키워드: Elastic strain

검색결과 1,445건 처리시간 0.033초

The Elastic Behaviour of Metal Powder Compacts

  • Prado, J. M.;Riera, M. D.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.181-182
    • /
    • 2006
  • Cylindrical specimens with different levels of density have been submitted to uniaxial compression tests with loading and unloading cycles. The analysis of the elastic loadings shows a non linear elasticity which can be mathematically represented by means of a potential law. Results are explained by assuming that the total elastic strain is the contribution of two terms one deriving from the hertzian deformation of the contacts among particles and another that takes into account the linear elastic deformation of the powder skeleton. A simple model based in an one pore unit cell is presented to support the mathematical model.

  • PDF

Scale-dependent buckling of embedded thermo-electro-magneto-elastic cylindrical nano-shells with different edge conditions

  • Yifei Gui;Honglei Hu
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.601-613
    • /
    • 2024
  • A new analytical buckling solution of a thermo-electro-magneto-elastic (TEME) cylindrical nano-shell made of BiTiO3-CoFe2O4 materials is obtained based on Hamiltonian approach. The Winkler and Pasternak elastic foundations as well as thermo-electro-magneto-mechanical loadings are applied, and two different types of edge conditions are taken into the investigation. According to nonlocal strain gradient theory (NSGT) and surface elasticity theory in conjunction with the Kirchhoff-Love theory, governing equations of the nano-shell are acquired, and the buckling bifurcation condition is obtained by adopting the Navier's method. The detailed parameter study is conducted to investigate the effects of axial and circumferential wave numbers, scale parameters, elastic foundations, edge conditions and thermo-electro-magnetic loadings on the buckling behavior of the nano-shell. The proposed model can be applied in design and analysis of TEME nano components with multi-field coupled behavior, multiple edge conditions and scale effect.

A Study on Dynamic Crack-Tip Fields in a Strain Softening Material

  • Jang, Seok-Ki;Xiankui Zhu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.494-502
    • /
    • 2003
  • The near-tip field of mode-I dynamic cracks steadily propagating in a strain softening material is investigated under plane strain conditions. The material is assumed to be incompressible and its deformation obeys the $J_2$ flow theory of plasticity. A power-law stress-strain relation with strain softening is adopted to account for the damage behavior of materials near the dynamic crack tip. By assuming that the stresses and strain have the same singularity at the crack tip. this paper obtains a fully continuous dynamic crack-tip field in the damage region. Results show that the stress and strain components the same logarithmic singularity of (In(R/r))$\delta$, and the angular variations of filed quantities are identical to those corresponding to the dynamic cracks in the elastic-perfectly plastic material.

고온하에서의 스프링의 피로특성에 관한 연구 (A study on fatigue characteristics of spring under high-temperature)

  • 이영배;염영하;우창수
    • 오토저널
    • /
    • 제8권3호
    • /
    • pp.77-87
    • /
    • 1986
  • The fatigue characteristic study of a Pony Coil spring is performed by considering the tropical service conditions in the range of 50.deg. C through 150.deg. C. The experiment results of the static and dynamic characteristics of the test pieces agreed with the result of the strain analysis by wittricke's method. The strain energy value is increased as temperature rises. An increase is 1.58% at 100.deg. C and 2.26% at 150.deg. C after fatigue tests. The elastic strain is also decreased as temperature rises.

  • PDF

횡보강 효과를 고려한 콘크리트의 응력-변형도 관계 (Stress-Strain Relations of Plain and Confined Concrete)

  • 김진근;이태규;서용표
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.116-121
    • /
    • 1990
  • Baxed on the results tested by various researchers, a complete stress-strain relation of plain and confined concrete is proposed. The peak strength and the corresponding strain are calculated by using the Mohr-Coulomb theory and elastic tri-axial constitutive relation. A parametric study was conducted to assess the influence of the plain concrete strength, the degree of confinement, the shape of the section, and the tie configuration for the square section. According to this model, the behavior of concrete section is predicted, and compared with experimental data and other proposed models on circular and square sections. A good agreement between theoretical and experimental results is observed.

  • PDF

차륜-레일의 구름접촉에 의한 라체팅 시뮬레이션 (Simulation of Ratcheting in Wheel-Rail Contact)

  • 구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1592-1597
    • /
    • 2009
  • Ratcheting is a cyclic accumulation of strain under a cyclic loading. It is a kind of mechanisms which generate cracks in rail steels. Though some experimental and numerical study has been performed, modeling of ratcheting is still a challenging problem. In this study, an elastic-plastic constitutive equation considering non-linear kinematic hardening and isotropic hardening was applied. Under the tangential stress of the contact stresses, a cyclic stress-strain relation was obtained by using the model. Strain under repeated cycles was accumulated.

  • PDF

Finite strain nonlinear longitudinal vibration of nanorods

  • Eren, Mehmet;Aydogdu, Metin
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.323-337
    • /
    • 2018
  • The nonlinear free vibration of a nanorod subjected to finite strain is investigated. The governing equation of motion in material configuration in terms of displacement is determined. By means of Galerkin method, the Fourier series solutions satisfying some typical boundary conditions are determined. The amplitude-frequency relationship and interaction between the modes are studied. The effects of nonlocal elasticity are shown for different length of nanotubes and nonlocal parameter. The results show that nonlocal effects lead to additional internal modal interaction for nanorod vibrations.

판형 홀다운스프링 집합체의 탄성강성도 민감도 평가 (Evaluation of an elastic stiffness sensitivity of leaf type HDS)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1276-1290
    • /
    • 1997
  • The previous elastic stiffness formulas of leaf type holddown spring assemblies(HDSs) have been corrected and extended to be able to consider the point of taper runout for the TT-HDS and all the strain energies for both the TT-HDS and the TW-HDS based on Euler beam theory and Castigliano'stheorem. The elastic stiffness sensitivity of the leaf type holddown spring assemblies was analyzed using the derived elastic stiffness formulas and their gradient vectors obtained from the mid-point formula. As a result of the sensitivity analysis, the elastic stiffness sensitivity at each design variable is quantified and design variables having remarkable sensitivity are identified. Among the design variables, leaf thickness is identified as that of having the most remarkable sensitivity of the elastic stiffness. In addition, it was found that the sensitivity of the leaf type HDS's elastic stiffness is exponentially correlated to the leaf thickness.

인장 실험 데이터를 이용한 피로한도 결정에 관한 연구 (Determination of the Fatigue Limit by Using a Tensile Testing Data)

  • 김태훈;김학윤;오흥국;진억용
    • 한국재료학회지
    • /
    • 제10권2호
    • /
    • pp.155-159
    • /
    • 2000
  • 고주기 피로조건에서 응력진폭은 항복점이하의 응력이므로 변형은 일반적으로 탄성적이다. 만약 변형이 완전히 탄성적이라면 피로는 생겨나지 않을 것이다. 그러나 이는 항복점의 개념과 항복점 아래에서의 순수탄성변형의 가정을 과도하게 단순화한 것이다. 인장실험 시 시편 전체가 파괴 절차를 따르는 반면, 고주기 피로실험에서는 국부적 영구 슬립띠가 파괴절차를 따른다. 그러나 두 경우에서 파괴 전변형영역의 단위체적 당 변형의 축적은 두 재료가 동일하기 때문에 국부적으로 동일하다. 미소 소성변형이나 Luders band, 탄성영역에서의 인장실험곡선의 기울기변화는 재료속에 포함된 경도가 높은 침입형 또는 침탄형 원자의 구름에 기인한다. 이들이 구름운동(Rolling movement)을 일으켜 다음 격자로 이동하면 소성변형이 발생되는 반면, 완전히 구르지 못하고 제자리로 되돌아오는 운동을 반복하는 경우가 바로 피로한계인다.

  • PDF

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.