• 제목/요약/키워드: Elastic material

Search Result 2,398, Processing Time 0.028 seconds

Comparative Study on Material Constitutive Models of Ice (얼음의 재료 모델 적용 타당성 연구)

  • Choung, Joon-Mo;Nam, Ji-Myung;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • To define ice as a solid material, mathematical and physical characteristics and their application examples are investigated for several materials' yield functions which include isotropic elastic, isotropic elastic-plastic, classical Drucker-Prager, Drucker-Prager Cap, Heinonen's elliptic, Derradji-Aouat's elliptic, and crushable foam models. Taking into account brittle failure mode of ice subject to high loading rate or extremely low temperature, isotropic elastic model can be better practicable than isotropic elastic-plastic model. If a failure criterion can be properly determined, the elastic model will provide relatively practicable impact force history from ice-hull interactions. On the other hand, it is thought that the soil models can better predict the ice spalling mechanism, since they contain both terms of shear stress-induced and hydrostatic stress-induced failures in the yield function.

Study on the Thermal and Mechanical Properties of Elastic Epoxies (탄성에폭시의 열적.기계적 특성에 관한 연구)

  • Min, J.Y.;Lee, K.W.;Lee, K.Y.;Park, D.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.248-251
    • /
    • 2003
  • In this paper, it was experimented about thermal and mechanical insulation properties of a elastic epoxy specimen. We made elastic epoxy specimen adding a ratio of 0[phr], 20[phr], 35[phr] and 53[phr] with modifier to existing epoxy. Each specimen was absorbed by 25h, 196h, 361h 484h with water. In water-absorption state, it was experimented a change of heat flows by temperature of elastic epoxy and changes of thermal expansion coefficient. Also, a hardness-change of each specimen was experimented by change of water-absorption time. In this experiment DSC (Differential Scanning Calorimetry) and TMA (Thermomechanical Analysis) were used. A temperature range of DSC was changed from -0[$^{\circ}C$] to 200[$^{\circ}C$], TMA was changed from -0[$^{\circ}C$] to 350[$^{\circ}C$]. In addition, we investigated structural analysis of water absorbed specimen using SEM (Scanning electron microscope).

  • PDF

Effects of Span-to-depth Ratio and Poisson's Ratio on Elastic Constants from Bending and Plate Tests

  • Jeong, Gi Young;Kong, Jin Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The goal of this study is to evaluate the limitation of ASTM D 198 bending and ASTM D 3044 in determination of elastic modulus and shear modulus. Different material properties and span to depth ratios were used to analyze the effects of material property and testing conditions. The ratio of true elastic modulus to apparent elastic modulus evaluated from ASTM D 198 bending sharply decreased with increment of span to depth ratio. Shear modulus evaluated from ASTM D 198 bending decreased with increment of depth, whereas shear modulus evaluated from ASTM D 3044 was hardly influenced by increment of depth. Poisson's ratio influenced shear modulus from ASTM D 198 bending but did not influence shear modulus from ASTM D 3044. Different shearing factor was obtained for different depths of beams to correct shear modulus obtained from ASTM D 198 bending equivalent to shear modulus from theory of elasticity. Equivalent shear modulus of materials could be obtained by applying different shearing factors associated with beam depth for ASTM D 198 bending and correction factor for ASTM D 3044.

Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects

  • Ebrahimi, Farzad;Heidar, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.295-318
    • /
    • 2018
  • This research studies thermo-elastic behavior of rotating micro discs that are employed in various micro devices such as micro gas turbines. It is assumed that material is functionally graded with a variable profile thickness, density, shear modulus and thermal expansion in terms of radius of micro disc and as a power law function. Boundary condition is considered fixed-free with uniform thermal loading and elastic field is symmetric. Using incompressible material's constitutive equation, we extract governing differential equation of four orders; to solution this equation, we utilize general differential quadrature (GDQ) method and the results are schematically pictured. The obtained result in a particular case is compared with another work and coincidence of results is shown. We will find out that surface effect tends to split micro disc's area to compressive and tensile while nonlocal parameter tries to converge different behaviors with each other; this convergence feature make FGIMs capable to resist in high temperature and so in terms of thermo-elastic behavior we can suggest, using FGIMs in micro devices such as micro turbines (under glass transition temperature).

Limit speeds and stresses in power law functionally graded rotating disks

  • Madan, Royal;Saha, Kashinath;Bhowmick, Shubhankar
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.115-131
    • /
    • 2020
  • Limit elastic speed analysis of Al/SiC-based functionally graded annular disk of uniform thickness has been carried out for two cases, namely: metal-rich and ceramic rich. In the present study, the unknown field variable for radial displacement is solved using variational method wherein the solution was obtained by Galerkin's error minimization principle. One of the objectives was to identify the variation of induced stress in a functionally graded disk of uniform thickness at limit elastic speed using modified rule of mixture by comparing the induced von-Mises stress with the yield stress along the disk radius, thereby locating the yield initiation. Furthermore, limit elastic speed has been reported for a combination of varying grading index (n) and aspect ratios (a/b).Results indicate, limit elastic speed increases with an increase in grading indices. In case of an increase in aspect ratio, limit elastic speed increases up to a critical value beyond which it recedes. Also, the objective was to look at the variation of yield stress corresponding to volume fraction variation within the disk which later helps in material tailoring. The study reveals the qualitative variation of yield stress for FG disk with volume fraction, resulting in the possibility of material tailoring from the processing standpoint, in practice.

Dynamic response of FG carbon nanotubes nanoplates embedded in elastic media under moving point load

  • Mohamed A Eltaher;Ismail Esen;Alaa A. Abdelrahman;Azza M. Abdraboh
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.257-274
    • /
    • 2024
  • This work aims to study and analyse the dynamic size dependent behvior of functionally graded carbon nanotubes (FGCNTs) nanoplates embedded in elastic media and subjected to moving point load. The non-classical effect is incorporated into the governing equations using the nonlocal strain gradient theory (NSGT). Four different reinforcement configurations of the carbon nanotubes (CNTs) are considered to show the effect of reinforcement configuration on the dynamic behvior of the FGCNTs nanoplates. The material characteristics of the functionally graded materials are assumed to be continuously distributed throughout the thickness direction according to the power law. The Hamiltonian principle is exploited to derive the dynamic governing equations of motion and the associated boundary conditions in the framework of the first order shear deformation plate theory. The Navier analytical approach is adopted to solve the governing equations of motion. The obtained solution is checked by comparing the obtained results with the available results in the literature and the comparison shows good agreement. Numerical results are obtained and discussed. Obtained results showed the significant impact of the elastic foundation parameters, the non-classical material parameters, the CNT configurations, and the volume fractions on the free and forced vibration behaviors of the FGCNT nanoplate embedded in two parameters elastic foundation and subjected to moving load.

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Mohamed Bourada;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.103-119
    • /
    • 2024
  • The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 2020
  • Geometrically nonlinear buckling of functionally graded magneto-electro-elastic (FG-MEE) nanoshells with the use of classical shell theory and nonlocal strain gradient theory (NSGT) has been analyzed in present research. Mathematical formulation based on NSGT gives two scale coefficients for simultaneous description of structural stiffness reduction and increment. Functional gradation of material properties is described based on power-law formulation. The nanoshell is under a multi-physical field related to applied voltage, magnetic potential, and mechanical load. Exerting a strong electric voltage, magnetic potential or mechanical load may lead to buckling of nanoshell. Taking into account geometric nonlinearity effects after buckling, the behavior of nanoshell in post-buckling regime can be analyzed. Nonlinear governing equations are reduced to ordinary equations utilizing Galerkin's approach and post-buckling curves are obtained based on an analytical procedure. It will be shown that post-buckling curves are dependent on nonlocal/strain gradient parameters, electric voltage magnitude and sign, magnetic potential magnitude and sign and material gradation exponent.

Evaluation of Elastic-Plastic Fracture Toughness of Aged AISI 316 Steel Using DC-electric Potential Method (직류전위차법을 이용한 AISI 316강 시효재의 탄소성 파괴인성 평가)

  • Lim, Jae-Kyoo;Chang, Jin-Sang;Lino, Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.519-527
    • /
    • 1997
  • AISI 316 steel has been used extensively for heater and boiler tube of the structural plants such as power, chemical and petroleum plants under severe operating conditions. Usually, material degradation due to microcrack or precipitation of carbides and segregation of impurity elements, is occured by damage accumulated for long-term service at high temperature in this material. In this study, the effect of aging time on fracture toughness was investigated to evaluate the measurement of material degradation. The elastic-plastic fracture toughness behaviour of AISI 316 steel pipe aged at $550^{\circ}C$for 1h-10000h (the aged material) was characterized using the single specimen J-R curve technique and eletric potential drop method at normal loading rate(load-line displacement speed of 0.2mm/min) in room temperature and air environment. The fracture toughness data from above experiments is compared with the $J_{in}$ obtained from predicted values of crack initiation point using potential drop method.

A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation

  • Meftah, Ali;Bakora, Ahmed;Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Bedia, El Abbes Adda
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.317-330
    • /
    • 2017
  • This paper presents a free vibration analysis of plates made of functionally graded materials and resting on two-layer elastic foundations by proposing a non-polynomial four variable refined plate theory. Undetermined integral terms are introduced in the proposed displacement field and unlike the conventional higher shear deformation theory (HSDT), the present one contains only four unknowns. Equations of motion are derived via the Hamilton's principles and solved using Navier's procedure. Accuracy of the present theory is demonstrated by comparing the results of numerical examples with the ones available in literature.