• Title/Summary/Keyword: Elastic constant

Search Result 471, Processing Time 0.021 seconds

A Study on the Dynamic Characteristics of a Composite Beam with a Transverse Open Crack (크랙이 존재하는 복합재료 보의 동적 특성 연구)

  • 하태완;송오섭
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1019-1028
    • /
    • 1999
  • Free vibration characteristics of cantilevered laminated composite beams with a transverse non0propagating open carck are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The open crack is modelled as an equivalent rotational spring whose spring constant is calculated on the basis of fracture mechanics of composite material structures. Governing equations of a composite beam with a open crack are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect. the effects of various parameters such as the ply angle, fiber volume fraction, crack depth, crack position and transverse shear on the free vibration characteristics of the beam with a crack is highlighted. The numerical results show that the natural frequencies obtained from Timoshenko beam theory are always lower than those from Euler beam theory. The presence of intrinsic cracks in anisotropic composite beams modifies the flexibility and in turn free vibration characteristics of the structures. It is revealed that non-destructive crack detection is possible by analyzing the free vibration responses of a cracked beam.

  • PDF

Features of Residual Stress and Plastic Strain in Titanium/Aluminium Friction Welds (티탄과 알루미늄의 마찰용접에서 발생하는 잔류응력.소성변형)

  • 김유철;박정웅
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.84-89
    • /
    • 2000
  • Friction welding of titanium and aluminium is numerically modeled by the axisymmetric thermal elastic-plastic analysis. In titanium/aluminium friction welding, heat transfers into the titanium substrate to a distance of z=10(mm) on the side of the bondline and into the whole region of the aluminium substrate having the large thermal conductivity. Adjacent to the bondline, $^{\sigma}r\;and\;^{\sigma\theta}$ are tensile in the substrate whose thermal shrinkage is large, and are compressive in the substrate whose thermal shrinkage is small. $\sigma_z$ along the radial direction is large tensile at the periphery of the component. Plastic strain occurs only close to the bondline in the aluminium substrate. In the components of plastic strain, $\varepsilon^p_r\;and\;\varepsilon^p_{\theta}$ have positive values and $\varepsilon^p_r$ has large negative value. However, $\varepsilon^p_r$ is produced not because of the severity of the mechanical restraint condition, but on purpose to satisfy the condition of the volume constant. A plastic work is proposed as a measure to evaluate the mechanical severity. The plastic work is larger in the aluminium substrate than that in the titanium substrate. The mechanical condition is severer in the aluminium substrate.

  • PDF

An Efficient Solution for Multibody Dynamics Composed of Flexible Beams (유연한 보로 구성된 다물체 동역학의 효율적인 해법)

  • 이기수;금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2298-2305
    • /
    • 1992
  • To obtain the convenient solution of the multibody dynamic systems composed of flexible beams, linear finite element technique is adopted and the nodal coordinates are interpolated in the global inertia frame. Mass matrix becomes an extremely simple constant matrix and the force vector also becomes extremely simple because Coriolis acceleration and centrifugal force are not required. And the elastic force is also simply computed from the moving frame attached to the material. To solve the global differential algebraic euation. an ODE technique is adopted after Lagrange multiplier is computed by the accelerated iterative technique, and the time demanding procedures such as Newton-Raphson iterations and decomposition of the big matrix are not required. The accuracy of the present solution is checked by a well-known example problem.

Effect of Native and Acetylated Sweet Potato Starch on Rheological Properties of Composite Surimi Sol

  • Kim, Bae-Young;Kim, Won-Woo;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.245-248
    • /
    • 2008
  • The effects of native sweet potato starch (NSPS) and sweet potato starch modified by acetylation (MSPS) on dynamic rheological properties of surimi sols were investigated by small-deformation oscillatory measurements. Dynamic frequency sweeps of surimi sols at $10^{\circ}C$ showed that the addition of NSPS and MSPS resulted in a reduction of storage modulus (G') and loss modulus (G"). The tan $\delta$ values (ratio of G"/ G') of all samples were in the range of $0.15{\sim}0.54$ over a wide range of frequency, indicating that all surimi sols are more elastic than viscous. The characteristic G' thermograms of surimi sols during heating from 10 to $90^{\circ}C$ were influenced by the addition of starch. The tan $\delta$ values of all samples were maintained nearly constant above $45^{\circ}C$, showing that the G' is proportional to the G" irrespective of starch effects.

Low Cycle Fatigue Behavior of 429EM Stainless Steel at Elevated Temperature (429EM 스테인리스강의 고온 저주기 피로 거동)

  • Lee, Keum-Oh;Yoon, Sam-Son;Hong, Seong-Gu;Kim, Bong-Soo;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2004
  • Ferritic stainless steel is recently used in high temperature structures because of its good properties of thermal fatigue resistance, corrosion resistance, and low price. Tensile and low-cycle fatigue (LCF) tests on 429EM stainless steel used in exhaust manifold were performed at several temperatures from room temperature to 80$0^{\circ}C$. Elastic Modulus, yield strength, and ultimate tensile strength monotonically decreased when temperature increased. Cyclic hardening occurred considerably during the most part of the fatigue life. Dynamic strain aging was observed in 200~50$0^{\circ}C$, which affects the cyclic hardening behavior. Among the fatigue parameters such as plastic strain amplitude, stress amplitude, and plastic strain energy density (PSED), PSED was a proper fatigue parameter since it maintained at a constant value during LCF deformation even though cyclic hardening occurs considerably. A phenomenological life prediction model using PSED was proposed considering the influence of temperature on fatigue life.

Plastic Limit Load Solutions for Circumferential Surface Cracked Cylinders Under Combined Loading (복합하중이 작용하는 원주방향 표면균열배관에 대한 소성한계하중식)

  • Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin;Hwang, Seong-Sik;Kim, Joung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1469-1476
    • /
    • 2003
  • This paper provides plastic limit load solutions of cylinders with circumferential part-through surface cracks under combined axial tension, internal pressure and global bending. Such solutions are developed based on detailed three-dimensional (3-D) finite element (FE) limit analyses using elastic-perfectly-plastic material behaviour, together with analytical solutions based on equilibrium stress fields. For the crack location, both external and internal cracks are considered. Furthermore, in terms of the crack shape, both semi-elliptical and constant-depth surface cracks are considered. The resulting limit load solutions are given in a closed form, and thus can be easily used in practical situations. Being based on detailed 3-D FE limit analysis, the present solutions are believed to most reliable, and thus to be valuable information for integrity assessment of piping.

A Study on the Effect of a Single Overload on Fatigue Crack Retardation (단일과대하중이 피로균열성장에 미치는 영향에 관한 연구)

  • Kim, Kyung-Su;Kim, Sung-Cahn;Shin, Chun-Sik;Park, Jin-Young;Lee, Chang-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.73-78
    • /
    • 2002
  • Ships and ocean structures are generally under random loading. Various type of variable-amplitude loading affects fatigue crack growth and fatigue life. However interaction effects due to irregularity of loading including random loading have not explained exactly and it is difficult to examined fatigue crack growth behaviour and fatigue life for this reason. Therefore in this paper crack growth tests with constant-amplitude loading including a single overload were conducted to measure plastic zone size near crack tip of DENT specimen. And the observed plastic zone sized were discussed in terms of crack growth rate. As a result of this the effect the plastic rue size due to the overload is examined on the effect on crack growth rate and, consequently, fatigue life.

  • PDF

High Magnetoelectric Properties in 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 Single Crystal and Terfenol-D Laminate Composites

  • Ryu, Jung-Ho;Priya, Shashank;Uchino, Kenji;Kim, Hyoun-Ee;Viehland, Dwight
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.813-817
    • /
    • 2002
  • Magnetoelectric(ME) laminate composites of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3 (PMN-PT)$ and Terfenol-D were prepared by sandwiching single crystals of PMN-PT between Terfenol-D disks. The magnetoelectric voltage coefficient (dE/dH) of the composite was determined to be 10.30 V/cm${\cdot}$Oe, at 1 kHz and under a dc magnetic bias of 0.4 T. The value of dE/dH is ∼80 times higher than either that of naturally occurring magnetoelectrics or artificially-grown magnetoelectric composites. This superior magnetoelectric voltage coefficient is attributed to the high piezoelectric voltage constant as well as the high elastic compliance of PMN-PT single crystal and the large magnetostrictive response of Terfenol-D.

Time-domain Finite Element Formulation for Linear Viscoelastic Analysis Based on a Hereditary Type Constitutive Law (유전적분형 물성방정식에 근거한 선형 점탄성문제의 시간영역 유한요소해석)

  • 심우진;이호섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1429-1437
    • /
    • 1992
  • A new finite element formulation based on the relaxation type hereditary integral is presented for a time-domain analysis of isotropic, linear viscoelastic problems. The semi-discrete variational approximation and elastic-viscoelastic correspondence principle are used in the theoretical development of the proposed method. In a time-stepping procedure of final, linear algebraic system equations, only a small additional computation for past history is required since the equivalent stiffness matrix is constant. The viscoelasticity matrices are derived and the stress computation algorithm is given in matrix form. The effect of time increment and Gauss point numbers on the numerical accuracy is examined. Two dimensional numerical examples of plane strain and plane stress are solved and compared with the analytical solutions to demonstrate the versatility and accuracy of the present method.

Development of novel strain sensor using surface acoustic wave (새로운 표면탄성파를 이용한 변형률 센서 개발)

  • Oh, Hae-Kwan;Hwang, U-Jin;Eun, Kyung-Tae;Choa, Sung-Hun;Lee, Kee-Keun;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.594-599
    • /
    • 2011
  • A SAW strain sensor based on Shear Horizontal wave with an 92 MHz central frequency was developed. It consists of SAW sensor, PCB substrate and bonding material (Loctite 401). External force applied to PCB substrate bonded to a piezoelectric substrate induces strain at the substrate surface, which causes changes in the elastic constant and density of the substrate and hence the propagation velocity of the SAW. The change in the velocity of the SAW result in a frequency shift of the sensor and by measuring a frequency shift, we can extract the strain induced by the external force. The $41^{\circ}$ YX $LiNbO_3$ was used because it has a Leaky shear horizontal(SH) wave propagation mode and a high electromechanical coupling coefficient ($K^2$=17.2%). And to compare with Rayleigh wave mode, $128^{\circ}$ YX $LiNbO_3$ was used. And to make a stable and low insert loss, Split IDT structure was used. The obtained sensitivity and linearity of the SAW strain sensor in the case of Split IDT were measured to be 17.2 kHz / % and 0.99, respectively.