• Title/Summary/Keyword: Elastic constant

Search Result 468, Processing Time 0.027 seconds

A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure (II) (선체 용접부의 균열진전 및 피로수명예측에 관한 연구(II))

  • Kim, Kyung-Su;Shim, Chun-Sik;Kwon, Young-Bin;Ko, Hee-Seung;Ki, Hyeok-Geun;Viswanathan, K.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.679-687
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of crack initiation and propagation stages. For a welding member in ship structure, the fatigue crack propagation life is more important than the fatigue crack initiation life. To calculate precisely the fatigue crack propagation life at the critical welding location, the knowledge of the residual stress sensitivity on the fatigue strength is necessary. In this study, thermo elastic-plastic analysis was conducted in order to examine the effect of residual stress on the fatigue crack propagation life. Also the fatigue crack propagation lives considering residual stress were calculated using fatigue crack growth code, AFGROW, on the basis of fracture mechanics. AFGROW is widely used for fatigue crack growth predictions under constant and variable amplitude loading. The reliability of AFGROW on the fatigue of ship structure was confirmed by the comparison of the estimated results with the fatigue propagation test results.

Dynamic Properties of Tiny Piezoelectric linear Motor by Applied Voltage (인가 전압에 따른 초소형 압전 리니어 모터의 동특성)

  • Yoo, Kyoung-Ho;Ko, Hyun-Phill;Kang, Chong-Yun;Kim, Hyun-Jai;Ko, Tae-Kuk;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.62-63
    • /
    • 2005
  • Recently, a tiny piezoelectric linear motor using a vibration made of the transducer has been invented. The motor consists of a shaft, mobile element, and piezoelectric transducer using a piezoelectric radial mode bimorph disk. The fringe of the bimorph disk is fixed firmly which means this area has no degree of freedom. Therefore, the radial mode of the tranducer transfers to the flexurd mode. The mobile elements move along the shaft by the impact force generated by the flexurd mode of the piezoelectric transducer. The piezoelectric ceramic disks have thickness of 0.1 mm and diameter of 3.5 mm. The elastic disk is introduced between two disks of the ceramic, which has thickness of 0.1 mm and diameter of 3.8 mm. The fringe of the elastic disk is fixed by a brass cylinder which height is 1.2 mm. The Pyrex shaft is used which has diameter of 1 mm and height of 10 mm. The motors are operated at their resonant frequencies. The dynamic properties of the motor have been intensively measured and analyzed according to the applied voltage wave forms at the resonant frequencies. As the sawtooth and rectangular voltage waves are applied, the velocity, the thrust force, and the velocity dependence of the mobile position are measured. The dynamic characteristics are also analyzed within a period of each wave using laser vibrometer. The velocity of the mobile is moderately constant along the shaft. The better dynamic characteristics are obtained in the case of applying the rectangular wave.

  • PDF

A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho Sang-Hyun;Youn Sung-Won;Kang Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation

  • Chaabane, Lynda Amel;Bourada, Fouad;Sekkal, Mohamed;Zerouati, Sara;Zaoui, Fatima Zohra;Tounsi, Abdeldjebbar;Derras, Abdelhak;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.185-196
    • /
    • 2019
  • In this investigation, study of the static and dynamic behaviors of functionally graded beams (FGB) is presented using a hyperbolic shear deformation theory (HySDT). The simply supported FG-beam is resting on the elastic foundation (Winkler-Pasternak types). The properties of the FG-beam vary according to exponential (E-FGB) and power-law (P-FGB) distributions. The governing equations are determined via Hamilton's principle and solved by using Navier's method. To show the accuracy of this model (HySDT), the current results are compared with those available in the literature. Also, various numerical results are discussed to show the influence of the variation of the volume fraction of the materials, the power index, the slenderness ratio and the effect of Winkler spring constant on the fundamental frequency, center deflection, normal and shear stress of FG-beam.

First-principles studies on mechanical, electronic, magnetic and optical properties of new multiferroic members BiLaFe2O6 and Bi2FeMnO6: Originated from BiFeO3

  • Tuersun, Yisimayili;Rouzhahong, Yilimiranmu;Maimaiti, Maihemuti;Salamu, Abidiguli;Xiaerding, Fuerkaiti;Mamat, Mamatrishat;Jing, Qun
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1473-1479
    • /
    • 2018
  • Recently multiferroic materials have attract great interest for the applications on memorial, spintronic and magneto-electric sensor devices for their spontaneous magneto-electric coupling properties. Research and development of the various kinds of multiferroics are indispensable factor for a new generation multifunctional materials. In this research, mechanical, electronic, magnetic and nonlinear optical properties of La modified $BiLaFe_2O_6$ (BLFO) and Mn modified $Bi_2FeMnO_6$ (BFMO) were studied as new members of multiferroic $BiFeO_3$ (BFO) series by first-principles calculations, and compared with the pure BFO to discover the optimized properties. Our results show that BLFO and BFMO have good mechanical stability as revealed by elastic constants that satisfy the stability criteria. All these compounds exhibit anisotropic and ductile nature. The enhanced properties by La and Mn substitution, such as increased hardness, improved magnetism, decreased band gap and comparable second harmonic generation responses reveal that the new multiferroic members of BLFO and BFMO would get wider application than their BFO counterpart. Our study is expected to providing an appropriate mechanical reference data as guidance for engineering of high efficiency multifunctional devices with the BFO series.

Analysis of Elastic Wave Based Leakage Detection Technology Using Accelerometers (가속도계를 이용한 탄성파 기반 누수탐지 기술 분석)

  • Choi, Kwangmook;Lee, Hohyun;Shin, Gangwook;Hong, Sungtaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1231-1240
    • /
    • 2020
  • Water pipes are laid on the ground, making it impossible to visually detect leaks due to aging of pipes, and technology to detect leaks in pipes is mainly used to detect leaks in pipes by detecting leaks. In this paper, two accelerometers were attached to both ends of the constant water piping to calculate the time difference between the acquired data to detect leakage points. The leak test of piping was performed by installing valves at 4.3m, 8.6m, and 12.9m points on piping 17.2m, and changing the development rate of valves to 30% and 70%. Leakage can be detected for pressure drop in piping, which is 30% and 70% open valve. It is very important to detect leakage in the early stage, and it is judged that detection of the initial leak point from the algorithm applied in this paper will be possible.

Fluid Infiltration Effect on Breakdown Pressure in Laboratory Hydraulic Fracturing Tests

  • Diaz, Melvin B.;Jung, Sung Gyu;Lee, Gyung Won;Kim, Kwang Yeom
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.389-399
    • /
    • 2022
  • Observations on the influence of the fluid infiltration on the breakdown pressure during laboratory hydraulic fracturing tests, along with an analysis of the applicability of the breakdown pressure prediction for cylindrical samples using Quasi-static and Linear Elastic Fracture Mechanics approaches were carried out. These approaches consider fluid infiltration through the so-called radius of fluid infiltration or crack radius, a parameter that is not a material property. Two sets of tests under pressurization rate controlled and injection rate controlled tests were used to evaluate the applicability of these methods. The difficulty of the estimation of the radius of fluid infiltration was solved by back calculating this parameter from an initial set of tests, and later, the obtained relationships were used to predict breakdown pressures for a second set of tests. The results showed better predictions for the injection rate than for the pressurization rate tests, with average errors of 3.4% and 18.6%, respectively. The larger error was attributed to differences in the testing conditions for the pressurization rate tests, which had different applied vertical pressures. On the other hand, for the tests carried out under constant injection rate, the Linear Elastic Fracture Mechanics solution reported lower errors compared to the Quasi-static solution, with values of 3% and 3.8%, respectively. Moreover, a sensitivity analysis illustrated the influence of the radius of fluid penetration or crack radius and the tensile strength on the breakdown pressure, suggesting a need for a careful estimation of these values. Then, the calculation of breakdown pressure considering fluid infiltration in cylindrical samples under triaxial conditions is possible, although larger data sets are desirable to validate and derive better relations.

Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model

  • Hebali, Habib;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Hussain, Muzamal;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.49-64
    • /
    • 2022
  • In this work, the bending and dynamic behaviors of advanced composite plates resting on variable visco-Pasternak foundations are studied using a simple shear deformation integral plate model. The research is carried out with a view to a three-parameter foundation including the influences of the variable Winkler coefficient, the constant Pasternak coefficient and the damping coefficient of the elastic medium. The present theory uses a displacement field with integral terms instead of derivative terms by including also the shear deformation effect without introducing the shear correction factors. The equations of motion for advanced composite plates are obtained using the Hamilton principle. Analytical solutions for the bending and dynamic analysis are deduced for simply supported plates resting on variable visco-Pasternak foundations. Some numerical results are presented to demonstrate the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic responses of advanced composite plates.

New Design and Application of PVDF Ultrasonic Transducer for Measurement of Material Properties (재료물성 측정을 위한 직선집속 PVDF 초음파 트랜스듀서의 새로운 설계 및 응용)

  • Hong Soung-Wook;Kim Jung-Soon;Kim Sang-Yoon;Kim Moo-Joon;Ha Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.164-171
    • /
    • 2006
  • If the velocities of longitudinal, transverse and leaky surface acoustic waves in an isotropic material are given, the elastic constants and density of the material can be deduced analytically. Those velocities have been measured using three ultrasonic transducers with different vibrational modes so far. In this paper a line-focusing PVDF transducer with divided electrodes was newly proposed and designed for measuring approximate velocities of the three waves. The measurement method established in this study for each waves using the transducer was applied to several isotropic materials including fused quartz. The elastic stiffness constants and densities of the materials were calculated using the measured velocities, and the accuracies were discussed. It was shown that the obtained results are in good accord with the reference values.

Accelerated Thermal Aging Test for Predicting Lifespan of Urethane-Based Elastomer Potting Compound

  • Min-Jun Gim;Jae-Hyeon Lee;Seok-Hu Bae;Jung-Hwan Yoon;Ju-Ho Yun
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.73-81
    • /
    • 2024
  • In the field of electronic components, the potting material, which is a part of the electronic circuit package, plays a significant role in protecting circuits from the external environment and reducing signal interference among electronic devices during operation. This significantly affects the reliability of the components. Therefore, the accurate prediction and assessment of the lifespan of a material are of paramount importance in the electronics industry. We conducted an accelerated thermal aging evaluation using the Arrhenius technique on elastic potting material developed in-house, focusing on its insulation, waterproofing, and contraction properties. Through a comprehensive analysis of these properties and their interrelations, we confirmed the primary factors influencing molding material failure, as increased hardness is related to aggregation, adhesion, and post-hardening or thermal-aging-induced contraction. Furthermore, when plotting failure times against temperature, we observed that the hardness, adhesive strength, and water absorption rate were the predominant factors up to 120 ℃. Beyond this temperature, the tensile properties were the primary contributing factors. In contrast, the dielectric constant and loss tangent, which are vital for reducing signal interference in electric devices, exhibited positive changes(decreases) with aging and could be excluded as failure factors. Our findings establish valuable correlations between physical properties and techniques for the accurate prediction of failure time, with broad implications for future product lifespans. This study is particularly advantageous for advancing elastic potting materials to satisfy the stringent requirements of reliable environments.