• Title/Summary/Keyword: Elastic body

Search Result 525, Processing Time 0.025 seconds

Effects of Elastic Band Resistance Exercise Program on Body Functions and HbA1c of the Elderly with Type 2 Diabetes (탄력밴드 저항운동이 당뇨 노인의 신체 기능과 당화혈색소에 미치는 영향)

  • Park, Sang-Young;Kim, Chung-Sun;Nam, Seok-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.5
    • /
    • pp.362-369
    • /
    • 2012
  • Purpose: This study examined the effects of an elastic band resistance exercise program on the body functions and Glycosylated hemoglobin (HbA1c) of elderly people with type 2 diabetes. Methods: Twenty-seven elderly patients with type 2 diabetes were enrolled in this study (exercise group 14, control group 13). The subjects in the exercise group participated in the program for 60 minutes a day, three times a week, for 12 weeks. All the subject's body functions, HbA1c were measured to compare the following: before the intervention, at the completion of the 12 weeks intervention, and eight weeks after the intervention. Results: Compared to the control group, the exercise group showed significant improvements in the 12 week and follow-up measurement after the intervention in body function, such as the strength of the upper and lower limbs, agility and limit of stability. The body functions of the exercise group improved as the period of intervention progressed. On the other hand, the HbA1c level at each follow-up measurement was similar in the two groups. Conclusion: The 12 week elastic band exercise program is recommended as an effective intervention for improving the body functions of elderly people with type 2 diabetes. Nevertheless, a combined intervention of steady exercise, diet therapy and drug therapy will be needed for further active prevention and management of type 2 diabetes.

The Characteristic Study of McPherson Suspension Mechanism with Elastic Joints (탄성 조인트를 포함한 맥퍼슨 현가기구의 특성연구)

  • 강희용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.304-309
    • /
    • 1997
  • Elastic elements, at first, were extensively used in suspensions as vibration isolators at joints. Nowadays they are used to improve stability and handling. The design of these elements has become a very important matter since the loading condition of the mechanism gives a mew suspension geometry without any modification. This paper presents an analysis of forces and moments of joints with elastic elements in the McPherson suspension mechanism to evaluate accurately the elastic deformation using the displacement matrix method in conjunction with the equilibrium equations. First the suspension is modeled as a multi-loop spatial rigid-body guidance mechanism which has elastic elements at the hardpoints of the suspension. Then a method and design euqations are developed to analyze the suspension characteristics by the various tire load. Also the displacement matrices and constraint equations for links are appllied to determine the sensitivity of the suspension mechanism. Finally this approach may conduct a realistic design of suspension mechanisms with elastic elements to improve the performance of the automobile under various driving conditions.

  • PDF

Multibody Elastic Contact Analysis by Modified Linear Programming (수정된 선형계획법을 이용한 다물체 탄성 접촉 문제 해석)

  • 이대희;전범준;최동훈;임장근;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • A general and efficient algorithm is proposed for the analyses of multibody elastic contact problems. It is presumed that there exists negligible friction between the bodies. It utilizes a simplex type algorithm with a modified entry rule and incoporates finite element method to obtain flexibility matrices for arbitrarily shaped bodies. The multibody contact problem of a vehicle support on an elastic foundation is considered first to show the effictiveness of the suggested algorithm. Its solution is compared favorably with the existing solution. A contact problem among inner race, rollers and outer race is analyzed and the distribution of load, rigid body movements and contact pressure distributions are obtained. The trend of contact characteristics is compared with that of the idealized Hertzian solutions for two separate two-body contact problems. The numerical results obtained by directly treating a multibody contact are believed to be more exact than the Hertzian solution for the idealized two separate two-body contact problems.

Dynamic modeling and structural reliability of an aeroelastic launch vehicle

  • Pourtakdoust, Seid H.;Khodabaksh, A.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.263-278
    • /
    • 2022
  • The time-varying structural reliability of an aeroelastic launch vehicle subjected to stochastic parameters is investigated. The launch vehicle structure is under the combined action of several stochastic loads that include aerodynamics, thrust as well as internal combustion pressure. The launch vehicle's main body structural flexibility is modeled via the normal mode shapes of a free-free Euler beam, where the aerodynamic loadings on the vehicle are due to force on each incremental section of the vehicle. The rigid and elastic coupled nonlinear equations of motion are derived following the Lagrangian approach that results in a complete aeroelastic simulation for the prediction of the instantaneous launch vehicle rigid-body motion as well as the body elastic deformations. Reliability analysis has been performed based on two distinct limit state functions, defined as the maximum launch vehicle tip elastic deformation and also the maximum allowable stress occurring along the launch vehicle total length. In this fashion, the time-dependent reliability problem can be converted into an equivalent time-invariant reliability problem. Subsequently, the first-order reliability method, as well as the Monte Carlo simulation schemes, are employed to determine and verify the aeroelastic launch vehicle dynamic failure probability for a given flight time.

FSI simulation of pulsatile flow in the blood vessel (혈관내 맥동유동의 FSI 모사)

  • Kim, Yun-Gi;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1484-1486
    • /
    • 2008
  • Characteristics of pulsatile flow in 3-dimensional elastic vessel wall should be investigated in order to understand the physiological blood flow in human body. In this study, the modelling of the physiological blood flow in the elastic blood vessel is proposed. Variation of the pressure and the velocity wavefroms are obtained using the FSI method

  • PDF

Effects of Elastic Blood Vessel Motions on the Wall Shear Stresses for Pulsatile Flow of a Newtonian Fluid and Blood (뉴턴유체와 혈액의 맥동유동시 탄성혈관의 운동이 벽면전단응력분포에 미치는 영향)

  • Roh, Hyung-Woon;Kim, Jae-Soo;Park, Gil-Moon;Suh, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.318-323
    • /
    • 2001
  • Characteristics of the pulsatile flow in a 3-dimensional elastic blood vessel are investigated to understand the blood flow phenomena in the human body arteries. In this study, a model for the elastic blood vessel is proposed. The finite volume prediction is used to analyse the pulsatile flow in the elastic blood vessel. Variations of the pressure, velocity and wall shear stress of the pulsatile flow in the elastic blood vessel are obtained. The magnitudes of the velocity waveforms in the elastic blood vessel model are larger than those in the rigid blood vessel model. The wall shear stresses on the elastic vessel vary with the blood vessel motions. Amplitude indices of the wall shear stress for blood in the elastic blood vessel are $4\sim5$ times larger than those of the Newtonian fluid. As the phase angle increased, point of the phase angle is are moved forward and the wall shear stresses are increased for blood and the Newtonian fluid.

  • PDF

The Effect of Elastic Band Exercise Training and Detraining on Body Composition and Fitness in the Elder (탄력밴드 운동이 노인의 신체조성과 체력에 미치는 지속적 효과)

  • So, Wi-Young;Song, Misoon;Cho, Be-Long;Park, Yeon-Hwan;Kim, Yeon-Soo;Lim, Jae-Young;Kim, Seon-Ho;Song, Wook
    • 한국노년학
    • /
    • v.29 no.4
    • /
    • pp.1247-1259
    • /
    • 2009
  • Muscle mass is reduced by aging. There seems to be no direct relationship between sarcopenia(muscle loss) and medical cost in the elderly, but lowering muscle mass results in increase risk of fall and decrease of strength, fitness, physical activity, and independent life. This is coupled with physical trouble and chronic degenerative disease such as diabetes, obesity, hyperlipidemia, and hypertension. Thus, sarcopenia is potential risk factor increasing mortality. The purpose of this study was to investigate the effects of elastic band exercise and detraining on sarcopenia prevention related variables, body composition and fitness. The subject of this study was 60~70 aged 14 seniors who participated in exercise program in J-welfare senior center at J-gu in S-city. Elastic band exercise was performed twice per week for 12 weeks. The body composition and fitness variables were measured before 12 weeks of control, after control(before exercise), after 12 weeks of exercise(before detraining), and after 12 weeks of detraining. There was no significant difference in body composition and fitness variables before and after 12 weeks of control, but elastic band exercise before and after 12 weeks has effect on body composition variables such as weight (t=2.978, p=0.001), body mass index (t=3.502, p=0.004), percent body fat (t=2.216, p=0.045), muscle mass (t=-3.837, p=0.002), visceral fat area (t=5.186, p<0.001), and waist-hip ratio (t=3.045, p=0.009) and on fitness variables such as 2-minutes step (t=-6.891 p<0.001), arm curl (t=-4.702, p<0.001), chair stand (t=-4.860, p<0.001), chair sit and reach (t=-5.910, p<0.001), back scratch (t=-3.835, p=0.002), and 8-ft up and go (t=7.560, p<0.001). This exercise effect was continued after 12 weeks of detraining on body composition variables such as weight (t=2.323, p=0.037), body mass index (t=2.503, p=0.026), muscle mass (t=-3.137, p=0.008) and on fitness variables such as 2-minutes step (t=-6.489 p<0.001), chair stand (t=-4.694, p<0.001), chair sit and reach (t=-3.690, p=0.003), and 8-ft up and go (t=7.539, p<0.001). It was found that the elastic band exercise has positive effect on body composition and fitness in the elderly and the effect was maintained over 12 weeks of detraining.

Evaluation of $J_k$ integral for a plane crack in a rectilinear anisotropic body (선형 이방성 평면 균열에서의 $J_k$ 계산)

  • 안득만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1792-1798
    • /
    • 1991
  • In this paper the path independent $J_{k}$(k=1, 2) integrals are evaluated in a rectilinear anisotropic body for two dimensional case. The relationship among elastic constants are examined. Using those relationship the expression of $J_{2}$ Integral in terms of $K_{I}$ is found to be very simple.e.e.

Evolution of bone structure under axial and transverse loads

  • Qu, Chuanyong;Qin, Qing-Hua
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2006
  • The evolution process of an initially homogeneous bone structure under axial and transverse loads is investigated in this paper. The external loads include axial and external lateral pressure, electric, magnetic and thermal loads. The theoretical predictions of evolution processes are made based on the adaptive elasticity formulation and coupled thermo-magneto-electro-elastic theory. The adaptive elastic body, which is a model for living bone diaphysis, is assumed to be homogeneous in its anisotropic properties and its density. The principal result of this paper is determination of the evolution process of the initially homogeneous body to a transversely inhomogeneous body under the influence of the inhomogeneous stress state.

Pull - out Capacity of Ground Anchor in Weathered Rock (풍화암 지반에 정착된 앵커의 인발저항 특성)

  • 이승환;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.435-442
    • /
    • 2002
  • Fluid Confirmation Tests(FCT) on 1500 ground Anchors install in weathered rock were carried out to investigate upper and lower limit of elastic elongation, frictional resistant of fixed anchor body, mobilized angle between anchor body and soil. All the measured data were analysed and compared with theoretical equations. The frictional angles of diaphragm wall and anchorage system in weathered rock showed nonlinear curve between upper and lower limit of standard elongation. The FCT results indicated that the frictional resistant angles increased with higher values of surcharge load. The quality assurance on the fixed anchor location was investigated by means of measuring elastic elongation during the FCT, and comparing these with theoretical design length, the quality of anchors in this particular site found to be above average standard. The results of this research works with provide valuable guide line on quality assurance of anchors system as well as resonable prediction of friction resistance between the fixed anchor body and the weathered rock.

  • PDF