• Title/Summary/Keyword: Elastic body

Search Result 525, Processing Time 0.029 seconds

A Kinematical Analysis of Belle Motion on Parallel Bars (평행봉 Belle 기술동작의 운동학적 분석)

  • Kong, Tae-Ung
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.43-53
    • /
    • 2005
  • This study is to define how the difference of athletic change influence on the last regrasp after somersault in Belle movement of parallel bars. For his study, the following conclusion was produced by analysis of athletic change by means of three dimensional visual image in three athlete of nation. 1. As the picture of S1, there are total used time(2.01 sec), S3(2.17 sec) and S2(2.19 sec). In case of a short needed time, it is difficult for them to perform the remaining movement of the vertical elevating flight easily and comfortably, it is judged as performing the small movement with restrict swing. 2 In the change of body center sped by each event, it is calculated as $-89.1^{\circ}$ the narrowest in S1, $-81.96^{\circ}$ the widest and then $86.34^{\circ}$ in S3. In E3 event, average compound speed is 4.07m/s, S2 showed the fastest speed of 4.14m/s whereas S1 the narrowest angle of 3.95m/s. 3. A shoulder joint and coxa are the period of mention in E3. In E4 which was pointed out the longest vertical distance, S2 that is indicated the highest vertical height as the period of detach in parallel bars. showed -3.91m. This is regarded as a preparatory movement for dynamic performance after using effectively elastic movement of shoulder joint and coxa while easily going up with turning back movement. In the 5th phrase, long airborne time and vertical change position is showed as the start while regrasping securely air flight movement from high position. 4. In E5, a long flight time and a long vertical displacement were shown as the regrasp after somersault efficiently in high position with stability from the point of the highest peak of the center of the body. Especially, S2 is marked as a little bit long position, while S1 is reversely indicated as performing somersault and unstable motion in a low position. 5. In E3, at the point of the largest extension of the shoulder joint and hip joint the shoulder joint is largely marked in $182^{\circ}$ and the hip point $182^{\circ}$ in S2. The shoulder joint is marked at the smallest angle in $177^{\circ}$ and the hip point $176^{\circ}$ in S1. And S1 is being judged by its performance of the less self - confident motion with lessening a breath of swing. S2 makes the most use of flexion and extension of the shoulder joint and the hip joint effectively. It was performed greatly with swinging and dropping the rotary movement and the rotary inertia naturally. 6. In E6, as the point of regrasp of the upper arm in parallel bars it is recognized by the that of components of vertical and horizontal velocity stably. During this study, the insufficient thing and the study on the parallel bars at a real game later are more activated than now. If it is really used as the basic materials by means of Belle Picked Study of Super E level after Bell movement, you may perceive the technique movement previously and perform without difficulty. Especially, such technique as crucifix is quite advantageous for oriental people thanks to small body shape condition. In conclusion we will nicely prepare for our suitable environment to gradually lessen trials and errors by analyzing and studying kinematically this movement.

The Change of Functional Fitness and Bone Mineral Density on a Long-Term Combined Exercise Intervention in Breast Cancer Survivors. (유방암 생존자의 장기간 복합 운동중재에 따른 기능적 체력과 골밀도의 변화)

  • Kim, Yang-Sook;Kim, Mi-Sook
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.968-973
    • /
    • 2008
  • The study was to provide basic data and to examine the effect of combined exercise for 12 months on functional fitness and bone mineral density (BMD) in breast cancer survivors. The subjects of this study were 40 to 60-year-old married women (N=24) who finished their treatments chemotherapy and radiation therapy. They were divided into two groups that exercise group and exercise with alendronate group. Eighteen (T-score=$-2.2{\pm}0.8$) of the 24 women who were diagnosed osteopenia (N=15) and osteoporosis (N=3), participated in combined exercise (EG). The other six (T-score=$-4.6{\pm}0.9$) women who were diagnosed as osteoporosis (EDG), participated in the combined exercise program with osteoporosis drug (Alendronate 70 mg/w). The result of the analysis was as follows: Twelve months after, the participants (N=24) had a significant increase of the items such as sit and reach ups, grip strength (R and L) and sit ups test of functional fitness in the periods. In body composition, FM (fat mass) had significant decrease in periods. In the comparison of BMD, EG (N=18) had no change, while EDG (N=6) had significant improvement in L1, T12 and T-score after 12months. Consequently, complex exercise program (Hatha yoga, elastic band, gym ball) had positive effect on functional fitness and bone mineral density. We suggest that complex exercise program can be applied as recovery program after breast cancer surgery. Further research needs various and repetitive studies from more different targets or methods in the exercise program for its improvement.

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

Joint Diversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (I) - Constitution of Joint Diversion Analysis Technique - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(I) - 동시역산해석기법의 구성 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.145-154
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. This analysis consists of the forward modeling using transfer matrix, the sensitivity matrix for evaluating the ground system and DLSS (Damped Least Square Solution) as an inversion technique. The technique of joint inversion uses the dispersion characteristics of Love wave and Rayleigh wave simultaneously making the sensitivity matrix. The sensitivity matrix was used for inversion analysis repeatedly to find the approximate ground stiffness profile. The purpose of the joint inversion analysis is to improve accuracy and convergency of inversion results by utilizing that frequency contribution of each wave is different.

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

A Study on Optimal Shape of Stent by Finite Element Analysis (유한요소 해석을 이용한 스텐트 최적형상 설계)

  • Lee, Tae-Hyun;Yang, Chulho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.1-6
    • /
    • 2017
  • Stents are widely used as the most common method of treating coronary artery disease with implants in the form of a metal mesh. The blood flow is normalized by inserting a stent into the narrowed or clogged areas of the human body. In this study, the mechanical characteristics of a stent are investigated according to the variations of its design parameters by the Taguchi method and finite element analysis. A stent model of the Palmaz-Schatz type was used for the analysis. In the analysis, an elasto-plastic material model was adopted for the stent and a hyper-elastic model was used for the balloon. The main interest of this study is to investigate the effects of the design parameters which reduce the possibility of restenosis by adjusting the recoil amount. A Taguchi orthogonal array was constructed on the model of the stent. The thickness and length and angle of the slot were selected as the design parameters. The amounts of radial recoil and longitudinal recoil were calculated by finite element analysis. The statistical analysis using the Taguchi method showed that optimizing the shape of the stent could reduce the possibility of restenosis. The optimized shape showed improvements of recoil in the radial and longitudinal directions of ~1% and ~0.1%, respectively, compared to the default model.

Dynamic Electromyography Analysis of Shoulder Muscles for One-handed Manual Material Handling

  • Mo, Seung-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.313-326
    • /
    • 2015
  • Objective: The objective of this research is to quantitatively analyze muscle activities of arm and shoulder, according to direction in various types of one-handed manual material handling, based on surface electromyography. Background: Workers in industrial sites frequently carry out one-handed manual material handling using arm and shoulder muscles. Therefore, chronic load and accumulated fatigue occur to arm and shoulder muscles, which becomes a main cause of upper arm and shoulder musculoskeletal disorders. The shoulder muscles have widely range of motion, and complex interactions take place among various muscles including rotator cuff muscles. In this regard, research on interactions among should muscles, according to such various dynamic motions, is required. Method: Ten male subjects in their 20s participated in this research. This research considered upward, downward, leftward, rightward, forward and backward directions and fourteen muscles around arm and shoulder (biceps brachii and trapezius, etc.) as independent variables. The mean muscle activity was set as the dependent variable. This research extracted $4^{th}{\sim}7^{th}$ repetition signals according to ten times of repetitive muscle contraction, and analyzed the muscle activity concerned using the envelope detection technique. Results: The mean muscle activity of upward direction was analyzed highly statistically significant. The reason is that the effect of gravity works to arm and shoulder muscles. Also, it is conjectured that deformation of coracoacromial ligament was caused, and its contact pressure increased, due mainly to the shoulder flexion, and therefore load was analyzed high. Muscle activity was analyzed significantly low, according to concentric ballistic motion used in the concentric contraction phase by storing elastic energy in the eccentric contraction phase with a motion to bring the weight to the front of subject's body as to downward, leftward and backward directions. Because, elbow joint's flexion-extension motions mainly occurred, biceps brachii was analyzed high muscle activity as the prime mover. Conclusion: The information on the quantitative load of muscles can be applied to ergonomic work design for one-handed manual material handling to minimize muscle load. Application: This research has effectively identified muscle activity according to dynamic contraction by applying an envelope detection technique. The results can be used for ergonomic work design to minimize muscle load during the one-handed manual material handling, according to each direction. The research results are expected to be used for musculoskeletal disorder prevention and physiotherapy in the rehabilitation medical field, based on the muscle load of arm and shoulder in various directions.

ULTRASTRUCTURAL STUDY FOR VEIN REGENERATION AFTER MICROVASCULAR ANASTOMOSIS IN RABBIT FEMORAL VEIN (가토 대퇴정맥 미세정맥문합술 후 정맥 문합부 재생에 관한 미세조직학적 연구)

  • Rho, Hong-Seop;Kim, Chul-Hwan;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.340-349
    • /
    • 2007
  • Free flap transplantation with microvascular anastomosis has been successfully performed by development of surgical technique, materials and postoperative monitoring equipments of flap. But success rate of microvascular anastomosis is influenced by various factors, and failure rate is about 5-10%. The most influential factor for success rate is surgical technique and other factors that influence failure of microvascular anastomosis are ischemic time of free flap, thrombus formation of anastomosis region and vascular spasm. In this study, vascular patency and thrombus formation in experimental micro-venous anastomosis, and endothelial repair were observed with histologic analysis, scanning electron microscopy, transmission electron microscopic examination. The results were obtained as follows: 1. In vascular patency test in 30 minute and 7 days after micro-venous anastomosis with heparin irrigation, all of 12 anastomosis site were good vascular patency. 2. In thrombus formation in 2 weeks group(Experimental I), 2 site of 6 cases were observed thrombus, and in 4 weeks group(Experimental II), 1 site of 6 cases were observed thrombus. 3. In histologic examination, normal vein(Control Group) showed continued internal elastic lamina, well formed thick smooth muscle layer and connective tissue. The group of 2 weeks after microvenous anastomosis(Experimental I) showd locally recovered internal lamina, discontinued internal lamina, disorganized smooth muscle cells and granulation tissue around suture silk. In the group of 4 weeks after micro-venous anastomosis(Experimental II), anastomosis site showed almostly continued internal lamina, disorganized smooth muscle cells and cicartrized tissue around suture silk. 4. In scanning electron microscope examination in 2 weeks(Experimental I) after micro-venous anastomosis, mesh fibrin formation showed near to endothelial cells, and in 4 weeks after micro-venous anastomosis(EXperimental II), numerous blood cells and fibrin mesh formation was seen associated with irregular endothelial cell arrangement. 5. In transmission electron microscope examination in 2 weeks after micro-venous anastomosis(Experimental I), irregular arrangement of smooth muscle cells was seen adjacent to collagenized tissue around suture silk. In 4 weeks after micro-venous anastomosis(Experimental II), denuded venous wall composed of relatively well arranged smooth muscle cells was covered by endothelial cells, but fibroblast cells and foreign body giant cells near to suture silk was remained. From the results obtained in this study, results of good vascular patiency and anti-thrombotic effect of heparin were obtained as a local irrigation solution, and repair of venous endothelial cell was observed in 2 weeks after micro-venous anastomosis.

The Effect of Trunk Position on the Stress Distribution of Low-back and on the Spondylolisis (I) -Development on the Photoelastic Experimental Model and Device for the Stress Analysis of Low-Lumbar Spine- (체간 위치가 하요추부의 응력상태와 척추분리증에 미치는 영향 (I) -하요추부의 응력 상태 측정용 광탄성 실험 모델 재료개발과 장치개발-)

  • 황재석;최영철;안면환;권재도;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.723-736
    • /
    • 1992
  • Most degeneating diseases and back pains in the orthopaedic disease are originated from the unbalance of stress distribution in the low-lumbar spine. Therefore the stress analysis of lowerback is indispensible to the clinical diagnosis for the developing reason and the developing process of diseases. Therefore the same model materials as following are eveloped to analyze the stress distributions of lower-back by photoelastic experiment. The verterbral body and the process are molded from epoxy resin(the weight ratio of Araldite and hardner is 10 to 3), models are geometrically identical to them in vivo respectively and the ratio of their elastic modulus to that of model material is 1 to 10. It is assured that KE-1300 Silicon(E=0.8MPa), TSE-3562 Silicon(0.5MPa) and the composite silicon(3MPa) (the weight ratio of KE-1300 silicon and Jioreal : 10 to 4) are respectively effective as the model materials of ligament, musles and intervertevral disc which is essential to the movement of low-lumbar spine. All the elements associated with the movement of the low-lumbar spine are molded through the molding method developed in this research and assembled with the angles between the verterbra and the disc in the normal human lumbosacral spine. The stress distributions of the assembled model are analyzed by photoelastic experiment. It is certified by comparing the results of photoelastic experimebt with the clinical situations that the loading dveice and the loading conceptions used in this paper are effective.

Mechanical behavior of rock-coal-rock specimens with different coal thicknesses

  • Guo, Wei-Yao;Tan, Yun-Liang;Yu, Feng-Hai;Zhao, Tong-Bin;Hu, Shan-Chao;Huang, Dong-Mei;Qin, Zhe
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1017-1027
    • /
    • 2018
  • To explore the influence of coal thickness on the mechanical behavior and the failure characteristics of rock-coal-rock (RCR) mass, the experimental investigation of uniaxial compressive tests was conducted first and then a systematic numerical simulation by particle flow code (PFC2D) was performed to deeply analyze the failure mechanical behavior of RCR specimens with different coal thicknesses in conventional compression tests. The overall elastic modulus and peak stress of RCR specimens lie between the rock and the coal. Inter-particle properties were calibrated to match the physical sample strength and the stiffness response. Numerical simulation results show that the deformation and strength behaviors of RCR specimens depend not only on the coal thickness, but also on the confining pressure. Under low confining pressures, the overall failure mechanism of RCR specimen is the serious damage of coal section when the coal thickness is smaller than 30 mm, but it is shear failure of coal section when the coal thickness is larger than 30 mm. Whereas under high confining pressures, obvious shear bands exist in both the coal section and the rock section when the coal thickness is larger than 30 mm, but when the coal thickness is smaller than 30mm, the failure mechanism is serious damage of coal section and shear failure of rock section.