• Title/Summary/Keyword: Elastic Strain Range

Search Result 155, Processing Time 0.033 seconds

A Study of Low Cycle Fatigue Properties in CR60,SM50Q Steel and the Weldments (CR60강, SM58Q강과 그 용접부의 저사이클 피로특성)

  • 김창주;염태동;유인석;위창욱
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.73-79
    • /
    • 1994
  • Low cycle fatigue test was performed by companion specimens method to compare the properties of cyclic strain for the weldments of controlled rolling steel CR60 and welding structural steel SM58Q. And the result does not showed any difference of low cycle fatigue life between weldments. Especially, the values of coefficient of cyclic plastic strain $C_{p}$ and exponent of cyclic plastic strain $K_{p}$ of heat affected zones of CR60 steel and SM58Q steel were same. And $C_{p}$ and $K_{p}$ of CR60 steel were equal to the values of weld it means a good combination between the base metal, the heat affected zone and the weld of CR60 steel.eel.eel.

  • PDF

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

SHPB인장 시험에서 알루미늄 합금의 진응력-진변형률 관계

  • Yang, Hyeon-Mo;Min, Ok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1917-1922
    • /
    • 2000
  • The split Hokinson pressure bar(SHPB) test has been used to find the mechanical property of materials at high strain rate. A tensile split Hopkinson pressure bar test system is developed and the threaded tensile specimen and the split collar are placed between elastic bars. When the compressive elastic wave generated by a striker is transferred from the transmit bar to the incident bar, some elastic wave is reflected at the threaded parts of the specimen and the transmit bar. This reflected wave can interfere with the transmitted wave. A proper length of elastic bars and the location of strain gage in these elastic bars are determined to avoid this interference. In order to avoid the interference of elastic wave reflected at the threaded parts of specimen and elastic bar, the length of transmit bar must be longer than that of incident bar. Strain gage in transmit bar must be located as close as possible from the interface of a transmit bar and specimen. In the developed tensile SHPB test system, A12011-T3 and A17075-T6 are tested to get the true stress-strain relation in the range of strain rate at $10^3/sec$

Description of Hysteresis Loops using Modified Overlay Model (수정 다층 모델을 이용한 이력곡선의 묘사)

  • Yoon, Sam-Son;Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1856-1863
    • /
    • 2003
  • Overlay model had several advantages to describe hysteretic behavior of material and showed good capability for many engineering materials. However, this model is only applicable to material obeying Masing postulate. Some materials such as 316L stainless steel do not follow Masing postulate and show cyclic hardening(or softening) and strain range dependence. Low cycle fatigue tests of 316L stainless steel at 600$^{\circ}C$ were performed to investigate the characteristics of cyclic behavior of non-Masing material. From all tests cyclic softening was observed. There were differences in elastic limit of hysteresis loop according to applied strain range. To consider these features, modified overlay model was developed. Yield stresses of subelements were divided into isotropic and anisotropic part to describe the non-Masing behavior. The plastic strain range memorization was introduced to consider the strain range dependence. The prediction using modified overlay model showed a good accordance to actual hysteresis loops.

Improvement of Dao's Reverse Analysis and Determination of Representative Strain for Extracting Elastic-Plastic Properties of Materials in Analysis of Nanoindentation (나노압입공정 해석에서 재료의 탄소성 특성 도출을 위한 대표변형률의 결정과 Dao의 Reverse 해석의 향상)

  • Lee, Jung-Min;Lee, Chan-Joo;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • The newly developed analysis method for nanoindentation load-displacement curves are focused on not only obtaining elastic modulus and hardness values but also other mechanical properties, such as yield strength and strain hardening properties. Dao et al. developed a forward and reverse algorithm to extract the elasto-plastic properties of materials from the load-displacement curves obtained in nanoindentation test. These algorithms were only applicable for engineering metals (Poisson#s ratio 0.3) using the equivalent conical indenter of the Berkovich. However, the applicable metals are substantially limited because range of used in the finite element analysis is narrow. This study is designed to expand range of the applicable metals in the reverse algorithms established by Dao et al. and to improve the accuracy of that for extracting the elasto-plastic properties of materials. In this study, a representative strain was assumed to vary according to specific range of $E^*/{\sigma}_r$ and was defined as function of $E^*/{\sigma}_r$. Also, an initial unloading slope in reverse algorithms improved in this study was not considered as independent parameters of the load-displacement curves. The mechanical properties of materials for finite element analysis were modeled with the elastic modulus, E, the yield strength, ${\sigma}_y$, and the strain hardening exponents, n. We showed that the representative strain (0.033) suggested by Dao et al. was no longer applicable above the $E^*/{\sigma}_r$ of 400 and depended on values of $E^*/{\sigma}_r$. From these results, we constructed the dimensionless functions, in where the initial unloading slope was not included, for engineering metals up to $E^*/{\sigma}_r$ of 1500. These functions allow us to determine the mechanical properties with greater accuracy than Dao#s study.

Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior

  • Song Ki-Won;Kuk Hoa-Youn;Chang Gap-Shik
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.67-81
    • /
    • 2006
  • Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude(${\gamma}_0{\approx}150%$) beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (3) At sufficiently large strain amplitude range (${\gamma}_0>200%$), a viscous behavior becomes superior to an elastic behavior. (4) An ability to flow without fracture at large strain amplitudes is one of the most important differences between typical strong gel systems and concentrated xanthan gum solutions. (5) The linear viscoelastic behavior of concentrated xanthan gum solutions is dominated by an elastic nature rather than a viscous nature and a gel-like structure is present in these systems. (6) As the polymer concentration is increased, xanthan gum solutions become more elastic and can be characterized by a slower relaxation mechanism. (7) Concentrated xanthan gum solutions do not form a chemically cross-linked stable (strong) gel but exhibit a weak gel-like behavior. (8) A fractional derivative model may be an attractive means for predicting a linear viscoelastic behavior of concentrated xanthan gum solutions but classified as a semi-empirical relationship because there exists no real physical meaning for the model parameters.

Comparison of Elastic Modulus Evaluated by Plate Load Test and Soil Stiffness Gauge Considering Strain and Ground Stiffness (변형률 및 지반강성을 고려한 평판재하시험과 흙강성측정기의 탄성계수 비교)

  • Kim, Kyu-Sun;Shin, Donghyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.31-40
    • /
    • 2022
  • This study compares elastic moduli calculated using two stiffness testing methods with different strain ranges to evaluate the stress-settlement characteristics of foundation support layers. Elastic moduli were calculated by the soil stiffness gauge (SSG) in the micro-strain range and the plate load test (PLT) in the medium strain range. To apply the elastic moduli obtained by the two testing methods with different strain ranges to the design and construction of foundation soils, the correlation between each measurement value should be identified in advance. As a result of the comparative analysis of the elastic moduli calculated using the two methods in weathered soil and rock, which are representative support layers in Korea, the calculated elastic moduli differed depending on the types of soil and stress conditions. For various soil types, the static elastic modulus obtained by the PLT was reduced by 56% because of the difference in the strain level of the test compared with the dynamic elastic modulus obtained by the SSG. Therefore, the results show that it is necessary to apply corrections to the stress distribution, stress level, and dynamic effect according to the ground stiffness to effectively use the SSG instead of the PLT.

Anisotropic Elastic Shear Moduli of Sands Measured by Multi-directional Bender Element Tests in Stress Probe Experiments (사질토의 전단 하중 재하 시 다축 벤더엘리먼트 시험으로 구한 이방적 전단탄성계수)

  • Ko, Young Joo;Jung, Young Hoon;Lee, Choong Hyun;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.159-166
    • /
    • 2008
  • The stress-strain behavior of soils can usually be regarded as non-linear, while it is also known that the soil exhibits the linear-elastic behavior at pre-failure state (very small strain range, $<10^{-3}%$). This study aims to analyze the variation of anisotropic elastic shear moduli of granular soils in various stress conditions. The stress probe experiments with the triaxial testing device equipped with local strain gages and multi-directional bender elements were conducted. When the stress ratio exceeds the range between -0.5 and 1.5, the elastic shear stiffness in the axial direction deviates from the empirical correlation with current stresses, which indicates that the yielding of soils alters the internal pathway through which the elastic shear wave propagates. The experimental results show that the variation of elastic shear moduli in the horizontal direction closely relates to the volume change of soils.

Rheological Properties of Cooked Noodles with Different Starch Content Using Tensile Tests

  • Kim, Su-Kyoung;Lee, Seung-Ju
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.1013-1018
    • /
    • 2009
  • Several rheological terms were introduced to estimate the properties of cooked noodles with different starch content using tensile tests. Ring-shaped specimens were prepared by connecting both ends of the noodle strip before cooking. Hencky strain and rate, as well as true stress were applied in constant deformation tests. The elastic region on the curves of strain vs. stress was not clearly identified. Strain hardening in the subsequent plastic region was more prominent in low-starch noodles. Elongational viscosities at lower strain rates were used to differentiate noodles with different starch content, representing the dominant effect of protein content in the range of lower strain rates. In stress relaxation tests, the reciprocal of Peleg's constant $K_1$ (initial decay rate) and $K_2$ (asymptotic level) increased and decreased respectively, with an increase in starch content. This indicated that addition of starch contributed to the noodles becoming viscous liquid rather than elastic solid.

Applicability Evaluation of Modified Overlay Model on the Cyclic Behavior of 316L Stainless Steel at Room Temperature (316L 스테인리스강의 상온 반복 거동에 대한 수정 다층 모델의 적용성 검토)

  • Lim Jae-Yong;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1603-1611
    • /
    • 2004
  • The validity of 'modified overlay model' to describe the cyclic behavior of annealed 316L stainless steel at room temperature was investigated. Material parameters(~f$_{i}$, m$_{i}$b, η, E) fur the model were obtained through constant strain amplitude test. The strain amplitude dependency of elastic limit and cyclic hardening, which were the characteristics of this model, were considered. Eight subelements were used to describe the nonlinearity of the hysteresis loops. The calculated hysteresis curve in each condition (0.5%, 0.7%, 0.9% train amplitude test) was very close to the experimental one. Two tests, incremental step test and 5-step test, ere performed to check the validity of 'modified overlay model'. The elastic limit was saturated to the one of the highest strain amplitudes of the block in the incremental step test, so it seemed to be Masing material at the stabilized block. Cyclic hardening was successfully described in the increasing sequence of the strain amplitude in 5-step test. But, the slight cyclic softening followed by higher strain amplitude would not be able to simulate by'modified overlay model'. However, the discrepancy induced was very small between the calculated hystereses and the experimental ones. In conclusion,'Modified overlay model'was proved to be appropriate in strain range of 0.35%~ 1.0%..0%.