• 제목/요약/키워드: Elastic Shear Modulus

검색결과 298건 처리시간 0.026초

Engineered Soils의 특성 (Characteristics of Engineered Soils)

  • 이종섭;이창호;이우진;산타마리나
    • 한국지반공학회논문집
    • /
    • 제22권8호
    • /
    • pp.129-136
    • /
    • 2006
  • 단단한 모래 입자와 연약하고 작은 고무 입자로 이루어진 Engineered Soil의 변형률에 따른 거동을 분석하기 위한 시험을 수행하였다. 파의 전파, $K_{o}$ 재하, 삼축 시험을 이용하여 단단한 입상 재료에서 연약한 입상 재료의 전이 거동을 파악하기 위해 다른 모래부피비를 가진 Engineered Soil을 준비하였다. 미소, 중간 및 대변형 변형계수는 단단한 입자의 부피비에 따라 직선 관계가 아닌 것으로 나타났다. 대신 변형계수들은 모래부피비가 $sf=0.6{\sim}0.8$ 사이의 threshold 값을 초과할 때 급격하게 증가하였다. 이는 단단한 입자들의 침투 네트워크(percolating network)의 형성을 나타낸다. 내부마찰각은 단단한 입자의 부피비가 증가함에 따라 증가한다. 반대로, 첨두 강도에서의 축변형률은 연약한 입자의 함유에 따라 증가하며, 모래부피비가 60% 이하인 Engineered Soil에서는 첨두 강도를 관찰 할 수 없었다. 연약한 입자의 존재는 하중 체인(farce chain)의 형성을 바꾼다. 연약한 입자들이 높은 하중 전달 체인(chain)의 역할을 못할 지라도, 단단한 입자 하중 체인의 뒤틀림 방지의 중요한 역할을 수행한다.

경상분지 백악기 화강암 암반에 대한 역학적 REV 및 변형특성 추정사례 (Estimation of Mechanical Representative Elementary Volume and Deformability for Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea)

  • 엄정기;류성진
    • 지질공학
    • /
    • 제32권1호
    • /
    • pp.59-72
    • /
    • 2022
  • 본 연구는 부산 기장지역의 백악기 흑운모 화강암에 대하여 삼차원 개별체 수치해석 기반의 응력-변형 해석을 수행하고 절리성 암반의 강도 및 변형특성을 평가하였다. 절리성 암반의 역학적 특성에 대한 규모효과 및 REV를 규명하기 위한 워크플로우가 제시되었으며 연구지역에서 결정된 REV(representative elementary volume) 크기의 DFN(discrete fracture network) 큐브 블록에 대한 블록강도, 변형계수, 전단탄성계수, 체적탄성계수 등의 강도 및 변형 파라미터가 산정되었다. 연구지역의 역학적 REV 크기는 15 m 큐브로 평가되었으며 DFN 큐브 블록의 평균 블록강도 및 평균 변형계수는 각각 신선암의 52.8% 및 57.7%로 추정되었다. 연구지역의 절리성 암반은 역학적으로 뚜렷한 직교이방성을 나타내는 것으로 평가되었으며 삼차원 수치해석을 통하여 산정된 변형 파라미터를 이용하여 선형-탄성의 직교이방성 구성모델이 도출되었다. 연구지역에 대한 직교이방성 구성모델은 등가의 연속체 해석을 통한 터널 및 지하공간의 안정성 평가에 활용될 수 있다.

MW급 대용량 유도전동기 축계의 모드실험 기반 회전체 동역학 해석모델 수립 및 위험속도 예측 (Rotordynamic Model Development and Critical Speed Estimation Through Modal Testing for the Rotor-Bearing System of a MW Class Large-Capacity Induction Motor)

  • 박지수;최재학;김동준;심규호
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.279-289
    • /
    • 2020
  • In this paper, a method is proposed for establishing an approximate prediction model of rotor-dynamics through modal testing. In particular, the proposed method is applicable to systems that cannot be established according to conventional methods owing to the absence of information regarding the dimensions and material of the rotor-bearing system. The proposed method is demonstrated by employing a motor dynamometer driven by a 1 MW class induction motor without dimension and material information. The proposed method comprises a total of seven steps, wherein an initial model is established by incorporating approximate dimensions and material information, and the model is improved on the basis of the natural frequency characteristics of the system. During model improvement, the modification factor is introduced for adjusting the elastic modulus and shear modulus of the system. Analysis of critical speed and imbalance response indicates that the separation margin is 67% and the maximum vibration amplitude is less than the amplitude limit of 0.032 mm under the API 611 standard, which means that the motor dynamometer can stably operate at a rated speed of 1800 rpm. Hence, the obtained results validate the feasibility of the proposed method. Furthermore, for broad usage, it is necessary to accordingly apply and validate the proposed method for various rotor-bearing systems.

Shrinkage-Induced Stresses at Early Ages in Composite Concrete Beams

  • Park, Dong-Uk;Lee, Chang-Ho
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.15-22
    • /
    • 2002
  • Stresses that develop due to differential shrinkage between polymer modified cement mortar (PM) and Portland cement concrete (PCC) in a repaired concrete beam at early ages were investigated. Interface delamination or debonding of the newly cast repair material from the base is often observed in the field when the drying shrinkage of the repair material is relatively large. This study presents results of both experimental and analytical works. In the experimental part of the study, development of the material properties such as compressive strength, elastic modulus, interface bond strength, creep constant, and drying shrinkage was investigated by testing cylinders and beams for a three-week period in a constant-temperature chamber. Development of shrinkage-induced strains in a PM-PCC composite beam was determined. In the analytical part of the study, two analytical solutions were used to compare the experimental results with the analytically predicted values. One analysis method was of an exact type but could not consider the effect of creep. The other analysis method was rather approximate in nature but the creep effect was included. Comparison between the analytical and the experimental results showed that both analytical procedures resulted in stresses that were in fair agreement with the experimentally determined values. It may be important to consider the creep effect to estimate shrinkage-induced stresses at early ages.

  • PDF

함수구배재료에서 천이탄성동적모드 III 균열전파 (Transient Elastodynamic Mode III Crack Growth in Functionally Graded Materials)

  • 이광호
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.851-858
    • /
    • 2010
  • 함수구배재료에서 구배방향을 따라 전파하는 천이모드 III 균열에 대한 일반적인 탄성해를 근접해법으로 얻었다. 함수구배재료의 전단계수 및 밀도는 구배방향을 따라 지수형적으로 변화한다고 가정하였다. 균열선단의 응력과 변위장은 응력확대계수 및 균열선단속도의 시간변화율에 의존하는 계수들을 갖는 방사상 좌표계의 누승으로 얻었다. 비균질성과 천이계수들이 응력 및 변위장의 고차항에 미치는 영향에 대하여 토론하였다.

Application of meta-model based parameter identification of a seismically retrofitted reinforced concrete building

  • Yu, Eunjong
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.441-449
    • /
    • 2018
  • FE models for complex or large-scaled structures that need detailed modeling of structural components are usually constructed using commercial analysis softwares. Updating of such FE model by conventional sensitivity-based methods is difficult since repeated computation for perturbed parameters and manual calculations are needed to obtain sensitivity matrix in each iteration. In this study, an FE model updating procedure avoiding such difficulties by using response surface (RS) method and a Pareto-based multiobjective optimization (MOO) was formulated and applied to FE models constructed with a commercial analysis package. The test building is a low-rise reinforced concrete building that has been seismically retrofitted. Dynamic properties of the building were extracted from vibration tests performed before and after the seismic retrofits, respectively. The elastic modulus of concrete and masonry, and spring constants for the expansion joint were updated. Two RS functions representing the errors in the natural frequencies and mode shape, respectively, were obtained and used as the objective functions for MOO. Among the Pareto solutions, the best compromise solution was determined using the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) procedure. A similar task was performed for retrofitted building by taking the updating parameters as the stiffness of modified or added members. Obtained parameters of the existing building were reasonably comparable with the current code provisions. However, the stiffness of added concrete shear walls and steel section jacketed members were considerably lower than expectation. Such low values are seemingly because the bond between new and existing concrete was not as good as the monolithically casted members, even though they were connected by the anchoring bars.

Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation

  • Ozdemir, Y.I.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.213-222
    • /
    • 2018
  • The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin's theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.

충격파 저감을 위한 ER 지능구조물 (ER Smart Structures for Shock Wave Reduction)

  • 김재환;김지선;최승복;김경수
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.679-687
    • /
    • 2003
  • Shock wave reduction in electrorheological(ER) smart structures is studied. ER insert is a composite structure comprising two elastic outer layers between which is sandwiched layer of ER fluid. When a voltage is applied across the outer layers. the shear modulus and the loss factor of the ER fluid are enabled, and thus the dynamic properties of the composite structure is altered. For the shock wave reduction in a hull mount of a submerged structure, ER inserts are made on the hull mount structure. To investigate the ER insert shape. many types of ER insert pattern are considered. Modal test of ER insert structures is performed to obtain the mode shapes, natural frequencies and the acceleration transmissibility. The acceleration transmissibility is reduced at such a frequency region when an electric field is applied. It is observed that the natural frequencies and mode shapes can be tunable by applying electric field. The ER-inserted hull mount is installed in an integrated system and the overall performance of shock wave reduction is tested. The possibility of shock wave reduction in the hull mount is demonstrated.

지반의 교란을 최소화 한 원위치시험법 개발 및 적용 : 스크류재하시험 (Low-Soil Disturbance In-Situ Test Method Development and Its Application : Screw Plate Loading Test)

  • 이용수;황웅기;최용규;김태형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.977-986
    • /
    • 2009
  • Sampling disturbance can introduce considerable errors in the laboratory estimation of geotechnical properties of soils, and the results obtained from sophisticated sampling and careful laboratory testing are not matching with field behavior. Therefore, it is advantage to adopt in-situ testing techniques for the estimation of geotechnical parameters. Therefore, Screw plate loading test, one of new field test technologies, has been investigated in this study. This test can be utilized to find out important properties of soils such as load-displacement, elastic modulus, and shear strength. The screw plate loading test modified from the plate loading test is an experiment underneath ground by inserting a spiral type of auger screw. The structure and characteristics of the screw plate loading test device was examined in detail. In addition, The new screw plate loading test device was manufactured to refer the previous studies. The reliability of developing screw plate loading test was examined through the analysis of the laboratory test.

  • PDF

심해저 원유 생산용 매니폴드 기초 석션 버켓 기본 설계 (Basic Design of Subsea Manifold Suction Bucket)

  • 우선홍;이강수;정준모
    • 대한조선학회논문집
    • /
    • 제55권2호
    • /
    • pp.161-168
    • /
    • 2018
  • This paper presents the design procedure of the suction bucket used to support a subsea manifold. The soil-suction bucket interaction numerical analysis technique was verified by comparing the present results with a reference data. In order to simulate the soil-bucket interaction analyses of a subsea manifold structure, various material data such as undrained shear strength, elastic modulus, and poisson ratio of soft clay in Gulf of Mexico were collected from reference survey. We proposed vertical and horizontal design loads based on system weights and current-induced drag forces. Under the assumption that diameter of the suction bucket was 3.0 m considering real dimension of the subsea manifold frame structures, aspect ratio was decided to be 3.0 based on reference survey. The ultimate bearing load components were determined using tangent intersection method. It was proved that the two design load components were less than ultimate bearing loads.