• 제목/요약/키워드: Elastic Shear Modulus

검색결과 300건 처리시간 0.029초

Mode I and Mode II Analyses of a Crack Normal to the Graded Interlayer in Bonded Materials

  • Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1386-1397
    • /
    • 2001
  • In this paper, the plane elasticity equations are used to investigate the in-plane normal (mode I) and shear (mode II) behavior of a crack perpendicular to and terminating at the interface in bonded media with a graded interfacial zone. The interfacial Bone is treated as a nonhomogeneous interlayer with the continuously varying elastic modulus between the two dissimilar, homogeneous semi-infinite constituents. For each of the individual loading modes, based on the Fourier integral transform technique, a singular integral equation with a Cauchy kernel is derived in a separate but parallel manner. In the numerical results, the values of corresponding modes of stress intensity factors are illustrated for various combinations of material and geometric parameters of the bonded media in conjunction with the effect of the material nonhomogeneity within the graded interfacial zone.

  • PDF

SFRC구조물의 휨거동에 관한 해석적 연구 (Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제11권1호
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF

Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.403-414
    • /
    • 2018
  • In this paper, the lateral-torsional buckling of axially-transversally functionally graded tapered beam is investigated. The structure cross-section is assumed to be symmetric I-section, and it is continuously laterally supported by torsional springs through the length. In addition, the height of cross-section varies linearly throughout the length of structure. The proposed formulation is obtained for the case that the elastic and shear modulus change as a power function along the beam length and section height. This structure carries two concentrated moments at the ends. In this study, the lateral displacement and twisting angle relation of the beam are defined by sinusoidal series. After establishing the eigenvalue equation of unknown constants, the beam critical bending moment is found. To validate the accuracy and correctness of results, several numerical examples are solved.

Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil

  • Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제7권6호
    • /
    • pp.633-647
    • /
    • 2014
  • Biopolymers, polymers produced by living organisms, are used in various fields (e.g., medical, food, cosmetic, medicine) due to their beneficial properties. Recently, biopolymers have been used for control of soil erosion, stabilization of aggregate, and to enhance drilling. However, the inter-particle behavior of such polymers on soil behavior are poorly understood. In this study, an artificial biopolymer (${\beta}$-1,3/1,6-glucan) was used as an engineered soil additive for Korean residual soil (i.e., hwangtoh). The geotechnical behavior of the Korean residual soil, after treatment with ${\beta}$-1,3/1,6-glucan, were measured through a series of laboratory approaches and then analyzed. As the biopolymer content in soil increased, so did its compactibility, Atterberg limits, plasticity index, swelling index, and shear modulus. However, the treatment had no effect on the compressional stiffness of the residual soil, and the polymer induced bio-clogging of the soil's pore spaces while resulting in a decrease in hydraulic conductivity.

불연속면의 영향을 고려한 암반동굴의 확률유한요소해석 (Stochastic Finite Element Analysis for Rock Caverns Considering the Effect of Discontinuities)

  • 최규섭;황신일;이경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.95-102
    • /
    • 1996
  • In this study, a stochastic finite element model is proposed with a view to consider the uncertainty of physical properties of discontinuous rock mass in the analysis of structural behavior on underground caverns. In so doing, the LHS(Latin Hypercube sampling) technique has been applied to make up weak points of the Crude Monte Carlo technique. Concerning the effect of discontinuities, a joint finite element model is used that is known to be superior in explaining faults, cleavage, things of that nature. To reflect the uncertainty of material properties, the variables such as the the elastic modulus, the poisson's ratio, the joint shear stiffness, and the joint normal stiffness have been used, all of which can be applicable through normal distribution, log-normal distribution, and rectangulary uniform distribution. The validity of the newly developed computer program has been confirmed in terms of verification examples. And, the applicability of the program has been tested in terms of the analysis of the circular cavern in discontinuous rock mass.

  • PDF

호남고속철도 연약지반구간의 전단파 속도분석과 탐사법 비교 (S-wave Velocity Analysis and Each Survey Comparison of Soft Ground in HoNam High-Speed Railway)

  • 민경남;이일화;정대호;안태봉;정찬묵
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.387-394
    • /
    • 2007
  • This study area located in HoNam High-Speed railway soft ground section. So it carried out the boring survey, field survey and test of laboratory. It collected the engineering data of ground and the data for the establishment arrangement. The investigation did a soil investigation in Nonsan. The investigation item excuted seismic piezocone penetration test, s-wave seismic refraction survey, ps logging test, density logging test which is a physical exploration and boring. Eventually, results of geotechnical and shear-wave survey are useful for ground information in soft ground that has identified the characteristics of geological responses and elastic modulus.

  • PDF

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Arabi, E.
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.389-401
    • /
    • 2018
  • An isoparametric six-node triangular element is utilized for geometrically nonlinear analysis of functionally graded (FG) shells. To overcome the shear and membrane locking, the element is improved by using strain interpolation functions. The Total Lagrangian formulation is employed to include the large displacements and rotations. Finding the nonlinear behavior of FG shells via laminated modeling is also the goal. A power function is employed to formulate the variation of elastic modulus through the thickness of shells. The results are presented in two ways, including the general FGM formulation and the laminated modeling. The equilibrium path is obtained by using the Generalized Displacement Control Method. Some popular benchmarks, including hyperbolical shell structures are solved to declare the correctness and accuracy of proposed formulations.

Study on Electro-Mechanical Coupling Effect of EAPap Actuator

  • Zhao, Lijie;Li, Yuanxie;Kim, Heung-Soo;Kim, Jae-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.640-643
    • /
    • 2006
  • In this paper, electro-mechanical coupling of cellulose-based Electro-Active Paper (EAPap) actuator is investigated by measuring induced strain and mechanical properties with and without electric excitation. The maximum induced in-plane strain is measured at the orientation angle of 45? samples. The elastic modulus and strength of EAPap are increased with electric excitation and the orientation angle of $45^{\circ}$ samples shows the largest increment of mechanical properties. From the observations, shear piezoelectricity is considered as the major piezoelectric mode of EAPap.

  • PDF

광탄성실험에 의한 함수구배 재료 균열 해석 (Analysis for Cracks of Functionally Gradient Materials by Photoelastic Experiment)

  • 이광호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.48-53
    • /
    • 2004
  • This paper suggested the method determing the stress intensity factor (SIF) for functionally gradient materials (FGMs) by photo elastic experimental method. The SIF for the center crack in a finite rectangulat plate with a linear variation of shear modulus with constant density and Poisson's ratio along the direction of the crack under mode I static loading is obtained. The exponential and linear variation of stress fields are used for obtaining the SIF. The greater crack length, the increaser the difference of the SIF between right and left side crack tip.

  • PDF

Hertzian 이동하중을 받는 피복된 재료의 탄소성 거동에 관한 유한요소해석

  • 김영종;조용주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.596-602
    • /
    • 1995
  • In this paper, the rolling-sliding contact problem of a layered semi-infinite solid compressed by a rigid surface is solved by finite element method based on the elasto-plastic theory. The purpose of this paper is to present the standard that is needed the later design. For this analysis, the principal parameters are layer thickness. Young's modulus ratio of layer and substrate and friction coefficient. In particular, this paper is interested in effect that layer thickness have influence upon displacement and shear and tensile stress at interface. For the layered material, the layer and the substrate behave elastic and linear-strain hardening respectively. For law friction, a relatively thin layer reduce the undesired maximum tensial stress but, for high friction, act contrary to the case of low friction.