• 제목/요약/키워드: Elastic Finite Element Analysis

검색결과 1,657건 처리시간 0.029초

보강링에 의하여 예압된 냉간단조금형구조의 탄성유한요소 해석 (Elastic Finite Element Analysis of the Cold Forging Dies Prestressed by Shrinkage Rings)

  • 서대윤;이민철;전만수
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.347-353
    • /
    • 1998
  • A new approach of elastic finite element to die stress analysis in forging is presented in this paper. The die set analysis problem is formulated by considering contact problems under both mechanical and thermal loads. In the approach, amount of shrink fit is controlled by thermal load i.e., temperature difference between die insert and shrink fits. The loading conditions are extracted automatically from a forging simulator. The predicted solution is compared with analytical one and it has been shown that the predicted results are in excellent agreement with the analytical ones. An application example is given, which was found in a cold forging company.

  • PDF

Evaluation of limit load analysis for pressure vessels - Part I: Linear and nonlinear methods

  • Chen, Xiaohui;Gao, Bingjun;Wang, Xingang
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1391-1415
    • /
    • 2016
  • Limit load of pressure bearing structures was reviewed in this article. By means of the finite element analysis, limit load of pressurized cylinder with nozzle was taken as an example. Stress classification method and Elastic-plastic finite element analysis combining with limit load determination methods were used to determine limit load of cylinder with nozzle. Comparison of limit load determined by different methods, the results indicated that limit load determined by linearization method was the smallest. Limit load determined by twice elastic slope criterion was the nearest than experimental results. Elastic-plastic finite element analysis had comparably computational precision, but required time consuming. And then the requirements of computer processing and storage capacity by power system became higher and higher. Most of criteria for limit load estimation included any human factors based on a certain substantive characteristics of experimental results. The reasonable criterion should be objective and operational.

지진시에 교량의 탄성 받침을 표현하는 범용 연결 유한 요소 모델의 유도식 (Derivation of General Link Finite Element Equation representing Pad Shoe in Bridge under Earthquake)

  • 정대열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.226-233
    • /
    • 1999
  • When we numerically model the bridge under seismic condition, the full model combining the super-structure and the sub-structure is considered for the more accurate results than the separate model. In this case, the super-structure is connected with the sub-structure by the elastic pad shoe that is difficult to model, because it has the three translational elastic stiffness and the three rotational elastic stiffness. The two-node General Link element is derived in finite element equation representing such a pad shoe, and it is verified by comparing the one General Link element model with the corresponding three legacy spring element model. It is easy to model the pad shoe, if the General Link finite element is used. And the seismic analysis result of the bridge full model structure, which is modeled with the General Link element, has been compared with the one of the separate model structure. The present study gives. more conservative result than that of the separate model, which does not consider the dynamic behaviour of the sub-structure.

  • PDF

콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 유한요소 거동해석 (Finite Element Analysis of Flexural Composite Members Considering Early-Age Concrete Properties)

  • 강병수;주영태;신동훈;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.463-468
    • /
    • 2003
  • A finite element formulation to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The total potential energy of the flexural composite member is minimized to derive the time dependent finite element equilibrium equation. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The numerical analysis with considering the variation of concrete elastic modulus are performed to investigate the effect of it on the early-age behavior of composite structures. The one dimensional finite element analysis results are compared with the analytical method based on the sectional analysis. Close agreement is observed among the two methods.

  • PDF

유한요소 교호법을 이용한 삼차원 균열의 탄소성 J 적분 해석 (Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method)

  • 박재학
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.145-152
    • /
    • 2009
  • SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook.

Finite element analysis of elastic property of concrete composites with ITZ

  • Abdelmoumen, Said;Bellenger, Emmanuel;Lynge, Brandon;Queneudec-t'Kint, Michele
    • Computers and Concrete
    • /
    • 제7권6호
    • /
    • pp.497-510
    • /
    • 2010
  • For better estimation of elastic property of concrete composites, the effect of Interfacial Transition Zone (ITZ) has been found to be significant. Numerical concrete composites models have been introduced using Finite Element Method (FEM), where ITZ is modeled as a thin shell surrounding aggregate. Therefore, difficulties arise from the mesh generation. In this study, a numerical concrete composites model in 3D based on FEM and random unit cell method is proposed to calculate elastic modulus of concrete composites with ITZ. The validity of the model has been verified by comparing the calculated elastic modulus with those obtained from other analytical and numerical models.

소형버스 정면 충돌 특성 해석을 위한 유한요소 모델의 개발 (Development of a Finite Element Model for Crashworthiness Analysis of a Small-Sized Bus)

  • 김학덕;송주현;오재윤
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.153-161
    • /
    • 2002
  • This paper develops a finite element model for crashworthiness analysis ova small-sized bus. The full vehicle finite element model is composed of 31,982 shell elements,599 beam elements,42 bar elements, and 34,204 nodes. The model uses four material models (such as elastic, elastic-plastic(steel), rigid. and elastic-plastic (rubber) material model) of PAM-CRASH. The model uses four contact types to define sliding interfaces in ten areas. A frontal crash test using an actual vehicle with 30mph velocity to a rigid barrier is carried out. Vehicle pulses at lower part of left and right b-pillar are measured, and deformed shapes of frame and driver seat's lower left area are photographed. A frontal crash simulation using the developed full vehicle finite element model is performed with PAM-CRASH installed in super computer SP2. The simulation is performed with the same conditions as the test. The measured vehicle pulses and photographed deformed shapes from the test are compared to ones from the simulation to validate the reliability of the developed model.

뼈와 유사한 생체복합재료의 유효탄성계수에 대한 수치해석 (Numerical Analysis of Effective Elastic Constants of Bone-Like Biocomposites)

  • 이도륜;범현규
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1288-1296
    • /
    • 2011
  • Effective elastic constants of bone-like biocomposites are investigated numerically. The bone-like materials are composed of strong layers and weak layers, and hierarchically structured. The unit cell model is employed to obtain the effective elastic constants. The effective anisotropic elastic constants of bone-like composites are obtained by using the potential energy method and finite element analysis. The effects of the Poisson's ratio, elastic modulus, hierarchical level, volume fraction and aspect ratio of the strong layer composed of the composites on the effective elastic constants are discussed.

탄성파 진행 문제를 위한 Paraxial 경계조건의 유한요소해석에 관한 연구 (A Study on Finite Element Analysis with Paraxial Boundary Conditions for Elastic Wave Propagation)

  • 김희석;이종세
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.33-38
    • /
    • 2008
  • For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. Paraxial boundary conditions(PBCs) which are kinds of absorbing boundary conditions based on paraxial approximations of the scalar and elastic wave equations not only lead to well-posed problem but also are stable and computationally inexpensive. But the complex mathematical forms of PBCs with partial derivatives complicate the application of those to finite element analysis. In this paper a penalty functional is newly proposed for applying PBCs into finite element analysis and the existence and uniqueness of the extremum of the proposed functional is demonstrated. The numerical verification of the efficiency is carried out through comparing PBCs with a viscous boundary condition.

  • PDF

직교이방성판 이론에 의한 콘크리트 슬래브의 탄성해석 (Elastic Analysis of Reinforced Concrete Slab Using Orthotropic Plate Theory)

  • 정재호;정성우;윤순종
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.487-492
    • /
    • 1997
  • Two-way concrete slab is often modeled as an orthotropic plate. In the modeling, flexural rigidities of the slab which depend upon the re-bar quantity have to be taken into account. Elastic equivalence technique in which the equilibrium and compatibility of the cross-section of slab satisfied is utilized to determine th flexural rigidities. In the analysis Navier's method is applied on the concrete slab with all edges simply supported under inform lateral load. In addition to the analysis using orthotropic plate theory, finite element method is also adopted to suggest the finite element modeling and to investigate the applicability of the method. Results obtained by both methods were compared and it is observed that the difference of the results was increased as the ratio of re-bar quantity increased.

  • PDF