• Title/Summary/Keyword: Elastase inhibitory effect

Search Result 155, Processing Time 0.018 seconds

Biological activities of Aster scaber extracts (참취(Aster scaber) 추출물의 생리활성)

  • Lee, Eun-Ho;Park, HyeJin;Kim, Na-Hyun;Hong, Eun-Jin;Park, Mi-Jung;Lee, Seon-Ho;Kim, Myung-Uk;An, Bong-Jeun;Cho, Young-Je
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.393-401
    • /
    • 2016
  • The phenolic compounds extracted from Aster scaber were examined for their biological activities owing to their potential use in health and beauty food products. The phenolic content in water and 60% ethanol extracts were $11.1{\pm}0.11$ and $4.18{\pm}0.05mg/g$, respectively. The DPPH radical scavenging activities of the water and ethanol extracts were 87% and 91% at $50{\mu}g$ phenolics/mL, respectively. At the same phenolics concentration, the respective extracts showed 84% and 95% for ABTS radical decolorization activities and 95% and 97% for TBARs. The antioxidant protection factors for the water and ethanol extracts at $200{\mu}g$ phenolics/mL were 1.87 and 2.22 PF, respectively. Enzyme inhibitory activities of the water and ethanol extracts ($50{\mu}g$ phenolics/mL) were 50.8% and 69.4% on angiotensin converting enzyme, 91% and 80% on xanthine oxidase, and 24% and 89% on ${\alpha}$-amylase, respectively. The tyrosinase inhibitory activities indicating skin-whitening were 47% and 25% for the water and ethanol extracts, respectively. Anti-wrinkle effect of the water extract was relatively higher than that of the ethanol extract. These results suggest that the water and ethanol extracts of Aster scaber can be used as an ingredient in health and beauty food products.

The Biological Activity from Prunella vulgaris Extracts (하고초(Prunella vulgaris) 추출물의 생리활성)

  • Kim, Jin-Sung;Lee, Ju-Yeong;Park, Ki-Tae;An, Bong-Jeun;Lee, Sun-Ho;Cho, Young-Je
    • Food Science and Preservation
    • /
    • v.20 no.2
    • /
    • pp.234-241
    • /
    • 2013
  • The phenolic compounds of water extracts from Prunella vulgaris were highest at 9.25 mg/g, respectively, when various extraction solvents were used. The optimum condition for extracting phenolic compounds from Prunella vulgaris was extraction in water for 18hr. The DPPH-scavenging activities of Prunella vulgaris were highest at the water extracts. The ABTS radical cation decolorization was higher than 40% in the range of 0~100% ethanol extract section. The antioxidant protection factor on the lipophilic phenolic metabolites was shown to be 1.1 PF in the water extracts from Prunella vulgaris. The TBARS was lower than the control ($0.53{\mu}M$) in all the sections. The tyrosinase inhibitory effect, which is related to skin whitening, was above 40%, and for the anti-wrinkle effect, the elastase inhibition activity was above 40% at 0.2 mg/mL. The astringent effect of the Prunella vulgaris 40% ethanol extracts was 98.1% at 1 mg/mL. As a result, it can be concluded that Prunella vulgaris has the potential to be used as a cosmetic material.

A Study on the Stability and Moisturizing Effect for the Cream Containing Castanea crenata Leaf Extract (밤나무 잎 추출물 함유 크림의 안정성 및 피부 보습효과에 관한 연구 (2))

  • Kim, Jin-Young;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.301-307
    • /
    • 2009
  • In the previous study, we evaluated and reported about the anti-oxidative activities of extract/fraction of Castanea crenata leaf. Extract/fraction of Castanea crenata leaf showed excellent free radical scavenging activity, cell protective activity and inhibitory activity on tyrosinase and elastase. In this study, in order to investigate the stability of cream containing 0.2 % Castanea crenata ethyl acetate fraction. pH, viscosity, and absorbance were measured under 4 different temperature ($4^{\circ}C$, $20^{\circ}C$, $37^{\circ}C$, $45^{\circ}C)$ and under the sun light at 2 weeks intervals for the 8 weeks. The variations on pH and viscosity of all experimental creams were similar to control cream. The absorbance variation of extract from experimental cream at 353 nm was in the order: under the sun > $45^{\circ}C$ > $37^{\circ}C$ > $20^{\circ}C$ > $4^{\circ}C$. It shows that ethyl acetate fraction in the cream can be oxidized under the sun. The bad smell and discoloration were not shown. Also, physical changes as creaming and cohesion were not shown. Also, transepidermal water loss (TEWL) and water contents in skin were measured. The cream containing Castanea cranata leaf extract was applied to the right lower arm. After 120 min, TEWL of parts was decreased as 29.7 % (experimental cream) and 5.4 % (control cream) respectively. And the water contents in skin were increased 22.6 % (experimental cream) and 24.7 % (control cream) respectively. It was confirmed that a cream containing ethyl acetate fraction of Castanea crenata leaf shows the superior moisturizing effect. The results showed that Castanea crenata leaf extract could be used as a new active ingredient for anti-aging cosmeceuticals.

The effect of two Terpenoids, Ursolic acid and Oleanolic acid on epidermal permeability barrier and simultaneously on dermal functions

  • Lim Suk Won;Jung Sung Won;Ahn Sung Ku;Kim Bora;Ryoo Hee Chang;Lee Seung Hun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.205-232
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1 mg/ml UA or 0.1-1 mg/ml ONA after tape stripping, and TEWL (Transepidermal water loss) was measured . The recovery rate increased in those UA or ONA treated groups (0.1 mg/ml UA and 0.5 mg/ml ONA) at 6 h more than $20\%$ compared to vehicle treated group (p<0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from f week without TEWL alteration (p<0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent $(ONA{\geq}UA>Vehicle)$. LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Veh). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via $PPAR\;\alpha$. Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either $ONA\;(10{\mu}M)$ or UA $(10{\mu}M)$ for 24h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via $PPAR\;{\alpha}$. Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

The Effect of Two Terpenoids, Ursolic Acid and Oleanolic Acid on Epidermal Permeability Barrier and Simultaneously on Dermal Functions (우솔릭산과 올레아놀산이 피부장벽과 진피에 미치는 영향에 대한 연구)

  • Suk Won, Lim;Sung Won, Jung;Sung Ku, Ahn;Bora, Kim;In Young, Kim;Hee Chang , Ryoo;Seung Hun, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.263-278
    • /
    • 2004
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1mg/mL UA or 0.1-1mg/mL ONA after tape stripping, and TEWL (transepidermal water loss) was measured. The recovery rate increased in those UA or ONA treated groups (0.1mg/mL UA and 0.5mg/mL ONA) at 6h more than 20% compared to vehicle treated group (p < 0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/mL per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from 1 week without TEWL alteration (p < 0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA=UA > vehicle). LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA > ONA > vehicle). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via PPAR Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either ONA (10${\mu}$M) or UA (10${\mu}$M) for 24 h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via PPAR Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.