• Title/Summary/Keyword: Einzel lens

Search Result 13, Processing Time 0.025 seconds

Experimental Study on the Operation of a Keyhole-Shaped Lens in a Microcolumn

  • Oh, Tae-Sik;Jin, Sang-Won;Choi, Sang-Kuk;Kim, Young-Chul;Kim, Dae-Wook;Ahn, Seung-Joon;Lee, Young-Bok;Kim, Ho-Seob
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.368-372
    • /
    • 2011
  • An advanced microcolumn is proposed which adopts a modified einzel lens structure. The newly designed einzel lens is composed of four electrodes. The two center electrodes are specially designed electrostatic quadrupole (EQ) einzel lenses having keyhole instead of circular apertures. We constructed the advanced microcolumn with the EQ-einzel lenses, and operated the newly designed microcolumn in single lens mode and double-lens mode. The preliminary results show that the EQ-einzel lens can improve the performance of the micro-column for large sample applications.

Electro-optical analysis of a miniaturized electrostatic electron lens (초소형 전자 렌즈의 전자 광학적 분석)

  • Kim, Ho-Seob;Kim, Dae-Wook;Kim, Young-Chul;Choi, Sang-Kuk;Kim, Dae-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.194-199
    • /
    • 2003
  • The analysis of operation characteristics of a miniaturized electrostatic electron lens system called an Einzel lens was performed using a simulation tool of FCM method. The potential distributions of Einzel lenses operated both in retarding and accelerating modes show similar features. But the electric fields determined from the potential distributions show opposite directions, which results in different features in the electron beam trajectory in each mode of operation. For the same working distance, focusing voltage in the accelerating mode is higher than that in the retarding mode.

Study on The Electron-Beam Optics in The Micro-Column for The Multi-Beam Lithography (다중빔 리소그래피를 위한 초소형 컬럼의 전자빔 광학 해석에 관한 연구)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.43-48
    • /
    • 2009
  • The aim of this paper is to describe the development of the electron-beam optic analysis algorithm for simulating the e-beam behavior concerned with electrostatic lenses and their focal properties in the micro-column of the multi-beam lithography system. The electrostatic lens consists of an array of electrodes held at different potentials. The electrostatic lens, the so-called einzel lens, which is composed of three electrodes, is used to focus the electron beam by adjusting the voltages of the electrodes. The optics of an electron beam penetrating a region of an electric field is similar to the situation in light optics. The electron is accelerated or decelerated, and the trajectory depends on the angle of incidence with respect to the equi-potential surfaces of the field. The performance parameters, such as the working distances and the beam diameters are obtained by the computational simulations as a function of the focusing voltages of the einzel lens electrodes. Based on the developed simulation algorithm, the high performance of the micro-column can be achieved through optimized control of the einzel lens.

  • PDF

A Study on the Optimum Design of the Condenser Lens of a Compact Electrostatic-Type SEM (전기장형 소형 주사전자현미경의 집속렌즈의 최적 설계에 대한 연구)

  • Kim, Ki-Hwan;Jang, Dong-Young;Park, Man-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.270-277
    • /
    • 2015
  • In this paper, we describe the production of a specific electrostatic-type scanning electron microscope based on miniaturization for application in other types of vacuum equipment. The initial configuration of the SEM starts with a minimal configuration that allows people to view sample images. After improving the stability of the SEM operation and resolution, we conducted experiments on identifying the characteristics and development of an einzel-type condenser lens with reference to the demagnification lens system of an SEM. The experiments were conducted at an acceleration voltage of 5 kV and we found the shape of the lens to be more reliable than a conventional lens. The lens was then added to improve the resolution in the nanometer region. The current measured on the sample was approximately 40 pA and its magnification was 4,000 times.

Characteristic Studies for Scan-Field Size and Visibility of Current Image in a Low Voltage Micro-Column (저 전압 초소형 전자칼럼의 주사면적 크기 및 전류영상 특성 연구)

  • Noriyuki, Ichimura;Kim, Young-Chul;Kim, Ho-Seob;Jang, Won-Kweon
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.365-369
    • /
    • 2008
  • The optimal condition for focusing an electron beam was investigated employing an electrostatic deflector in a low voltage micro-column. At fixed voltage of the electron emission tip, the focusing electron beam with source lens showed a larger scan field size and poorer visibility than those with an Einzel lens. Theoretical 3-D simulation indicated that a focusing electron beam with a source lens should have a larger spot size and deflection than those of a focusing Einzel lens.

Optical Assembly and Fabrication of a Micro-electron Column (마이크로 전자렌즈의 광학적 정렬과 조립)

  • Park, Jong-Seon;Jang, Won-Kweon;Kim, Ho-Seob
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.354-358
    • /
    • 2006
  • A silicon lens and an insulator of pyrex, components of a micro-electron column, should be assembled by aligning and stacking simultaneously. An optical alignment of a diffraction beam and a laser welding were employed for the assembly of a source lens and an Einzel lens with precision within $\pm$4% for the maximum aperture size. The experimental condition for optical alignment and laser welding are explained. Anodic bonding was used to assist in stacking lenses. A micro-electron column of smaller apertures assembled with precise alignment and fabrication was tested with a current image of a Cu grid of 9$\mu$m in linewidth, and showed a higher resolution in acceleration mode.

Electron Beam Properties of Microcolumn Based on the Structure of Electrostatic Lens Apertures (전자 렌즈 Aperture 구조에 따른 마이크로칼럼의 전자빔 특성)

  • Choi, Sang-Kuk;Yi, Cheon-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.428-432
    • /
    • 2005
  • Microlens precisely fabricated by MEMS process, is a key component of the Microcolumn, Since, miniaturization can reduces aberrations, microcolumn is expected to have better performance than conventional columns. Depending on the fabrication techniques, the sectional view of micro lens has different shape. In the paper, the effect of the sectional shape of extractor lens and limiting aperture on the focusing property of microcolumns have been studied.

A Feasibility Study on the Cold Hollow Cathode Gas Ion Source for Multi-Aperture Focused Ion Beam System (다개구 이온빔 가공장치용 냉음극 방식의 가스 이온원의 가능성 평가에 관한 연구)

  • Choi, Sung-Chang;Kang, In-Cheol;Han, Jae-Kil;Kim, Tae-Gon;Min, Byung-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.383-388
    • /
    • 2011
  • The cold hollow cathode gas ion source is under development for multi aperture focused ion beam (FIB) system. In this paper, we describe the cold hollow cathode ion source design and the general ion source performance using Ar gas. The glow discharge characteristics and the ion beam current density at various operation conditions are investigated. This ion source can generate maximum ion beam current density of approximately 120 mA/$cm^2$ at ion beam potential of 10 kV. In order to effectively transport the energetic ions generated from the ion source to the multi-aperture focused ion beam(FIB) system, the einzel lens system for ion beam focusing is designed and evaluated. The ions ejected from the ion source can be forced to move near parallel to the beam axis by adjusting the potentials of the einzel lenses.

Simulation Study of a High Current Proton Beam Transport for a 70MeV Cyclotron Injection

  • Choi, Y.K.;Kim, Y.S.;Hong, S.K.;Kim, J.H.;Kim, J.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.183.1-183.1
    • /
    • 2013
  • 70 MeV 사이클로트론의 인젝션 빔 라인은 Multi-CUSP 이온원에서 인출된 H- 빔을 펄스 또는 번칭하여 인플렉터를 통해 사이클로트론의 가속영역인 Dee로 전송하는 역할을 한다. 이 때, 빔을 번칭 시킴으로써 가속효율을 높이고, 손실을 줄여 높은 전류의 빔을 공급할 수 있도록 해야한다. 인젝션 시스템은 einzel lens, chopper, buncher, solenoid 등으로 구성된다. Einzel lens는 빔을 buncher의 중심으로 집속시켜 buncher의 번칭 효율을 높이고, buncher는 전기장을 이용하여 빔을 진행방향으로 집속시키는 기능을 갖는다. Chopper는 번칭된 빔을 일정 주기로 편향을 시켜 펄스 빔의 형태로 전송하는 역할을 한다. 솔레노이드는 적절한 자기장을 이용하여 빔을 집속시켜 인플렉터로 전송한다. 본 연구에서는 사이클로트론의 고전류 인젝션 시스템을 구축하고 각각의 구성요소에서 빔 envelope를 계산하고 비교하였다. SIMION code는 user가 지정한 특성을 가진 개별 입자의 궤도를 추적하는 프로그램으로 인젝션 시스템을 구성하는 각각의 컴포넌트에서의 입자의 진행모습과 buncher를 이용하여 빔의 전송 밀도가 향상됨을 확인하였다. 아울러 TRANSPORT 및 TURTLE 프로그램을 이용하여 SIMION을 통해 계산된 빔의 envelope과 비교하였다.

  • PDF

Research on the electron-beam characteristics according to the shape of electron lenses in low-energy microcolumn using Monte Carlo numerical analysis (Monte Carlo 수치해석법을 이용한 저 에너지 초소형 마이크로칼럼에 사용되는 전자렌즈의 모양에 따른 전자빔 특성 연구)

  • Kim, Young-Chul;Kim, Ho-Seob;Kim, Dae-Wook;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • Due to the modem MEMS technologies, the electron lenses that are used in the microcolumn can have much smaller optical aberrations compared with conventional electron lenses for the bulky electron columns. Since the electron lens system have great effect on the performance of the microcolumn, it is important to study the dependence of image quality on the configuration of the electronic imaging system, among which the source-lens part is most sensitive. In this work, we investigated the electron beam characteristics according to the shapes of extractor and limiting aperture that are elements of the source-lens part. By analyzing the data obtained, we proposed the optimum configuration of the electron lens system.