• 제목/요약/키워드: Einstein-type manifold

검색결과 18건 처리시간 0.02초

EINSTEIN-TYPE MANIFOLDS WITH COMPLETE DIVERGENCE OF WEYL AND RIEMANN TENSOR

  • Hwang, Seungsu;Yun, Gabjin
    • 대한수학회보
    • /
    • 제59권5호
    • /
    • pp.1167-1176
    • /
    • 2022
  • In this paper, we study Einstein-type manifolds generalizing static spaces and V-static spaces. We prove that if an Einstein-type manifold has non-positive complete divergence of its Weyl tensor and non-negative complete divergence of Bach tensor, then M has harmonic Weyl curvature. Also similar results on an Einstein-type manifold with complete divergence of Riemann tensor are proved.

GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS

  • Kumara, Huchchappa Aruna;Venkatesha, Venkatesha
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.639-651
    • /
    • 2020
  • Consider a gradient Einstein-type metric in the setting of K-contact manifolds and (κ, µ)-contact manifolds. First, it is proved that, if a complete K-contact manifold admits a gradient Einstein-type metric, then M is compact, Einstein, Sasakian and isometric to the unit sphere 𝕊2n+1. Next, it is proved that, if a non-Sasakian (κ, µ)-contact manifolds admits a gradient Einstein-type metric, then it is flat in dimension 3, and for higher dimension, M is locally isometric to the product of a Euclidean space 𝔼n+1 and a sphere 𝕊n(4) of constant curvature +4.

ON ALMOST QUASI RICCI SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.603-611
    • /
    • 2020
  • The purpose of this note is to introduce a type of Riemannian manifold called an almost quasi Ricci symmetric manifold and investigate the several properties of such a manifold on which some geometric conditions are imposed. And the existence of such a manifold is ensured by a proper example.

ON WEAKLY CYCLIC GENERALIZED B-SYMMETRIC MANIFOLDS

  • Mohabbat Ali;Aziz Ullah Khan;Quddus Khan;Mohd Vasiulla
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1271-1280
    • /
    • 2023
  • The object of the present paper is to introduce a type of non-flat Riemannian manifold, called a weakly cyclic generalized B-symmetric manifold (W CGBS)n. We obtain a sufficient condition for a weakly cyclic generalized B-symmetric manifold to be a generalized quasi Einstein manifold. Next we consider conformally flat weakly cyclic generalized B-symmetric manifolds. Then we study Einstein (W CGBS)n (n > 2). Finally, it is shown that the semi-symmetry and Weyl semi-symmetry are equivalent in such a manifold.

STUDY OF GRADIENT SOLITONS IN THREE DIMENSIONAL RIEMANNIAN MANIFOLDS

  • Biswas, Gour Gopal;De, Uday Chand
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.825-837
    • /
    • 2022
  • We characterize a three-dimensional Riemannian manifold endowed with a type of semi-symmetric metric P-connection. At first, it is proven that if the metric of such a manifold is a gradient m-quasi-Einstein metric, then either the gradient of the potential function 𝜓 is collinear with the vector field P or, λ = -(m + 2) and the manifold is of constant sectional curvature -1, provided P𝜓 ≠ m. Next, it is shown that if the metric of the manifold under consideration is a gradient 𝜌-Einstein soliton, then the gradient of the potential function is collinear with the vector field P. Also, we prove that if the metric of a 3-dimensional manifold with semi-symmetric metric P-connection is a gradient 𝜔-Ricci soliton, then the manifold is of constant sectional curvature -1 and λ + 𝜇 = -2. Finally, we consider an example to verify our results.

ON QUASI RICCI SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.9-15
    • /
    • 2019
  • In this paper, we study a type of Riemannian manifold, namely quasi Ricci symmetric manifold. Among others, we show that the scalar curvature of a quasi Ricci symmetric manifold is constant. In addition if the manifold is Einstein, then its Ricci tensor is zero. Also we prove that if the associated vector field of a quasi Ricci symmetric manifold is either recurrent or concurrent, then its Ricci tensor is zero.

COMPLETE SPACELIKE HYPERSURFACES WITH CMC IN LORENTZ EINSTEIN MANIFOLDS

  • Liu, Jiancheng;Xie, Xun
    • 대한수학회보
    • /
    • 제58권5호
    • /
    • pp.1053-1068
    • /
    • 2021
  • We investigate the spacelike hypersurface Mn with constant mean curvature (CMC) in a Lorentz Einstein manifold Ln+11, which is supposed to obey some appropriate curvature constraints. Applying a suitable Simons type formula jointly with the well known generalized maximum principle of Omori-Yau, we obtain some rigidity classification theorems and pinching theorems of hypersurfaces.