• Title/Summary/Keyword: Eigenvalue ratio

Search Result 124, Processing Time 0.025 seconds

Application of Pseudospectral Method to the Dynamic Analysis of Rectangular Reissner-Mindlin Plate (Pseudospectral 해석법을 이용한 직사각 Reissner-Mindlin 평판의 동적 해석)

  • Seung, Yong-Ho;Lee, Jin-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1419-1426
    • /
    • 2000
  • A dynamic analysis of rectangular Reissner-Mindlin plate was carried out using pseudospectral method. The pseudospectral method is superior to the finite element method because of more rapid conver gence speed of approximate solutions. Especially, the improvement in accuracy of the pseudospectral method is remarkable. Numerical examples demonstrate the excellent performance and robustness of the pseudospectral method with respect to thickness ratio of rectangular Reissner-Mindlin plate. The natural frequencies of rectangular Reissner-Mindlin plate calculated with the pseudospectral method are more reliable than those calculated with other numerical methods.

Improving buckling response of the square steel tube by using steel foam

  • Moradi, Mohammadreza;Arwade, Sanjay R.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1017-1036
    • /
    • 2014
  • Steel tubes have an efficient shape with large second moment of inertia relative to their light weight. One of the main problems of these members is their low buckling resistance caused from having thin walls. In this study, steel foams with high strength over weight ratio is used to fill the steel tube to beneficially modify the response of steel tubes. The linear eigenvalue and plastic collapse FE analysis is done on steel foam filled tube under pure compression and three point bending simulation. It is shown that steel foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior is investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve, in a way that, the failure mode change from local buckling to yielding.

A Study on the Secondary Buckling Behavior of Ship Plate (선체판부재의 2차좌굴거동에 관한 연구)

  • 고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 1996
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The main portion of ship structure is usually composed of stiffened plates. In these structures, plate buckling is one of the most important design criteria and buckling load may usually be obtained as an eigenvalue solution of the governing equations for the plate. To use the high tensile steel plate effectively, its thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. When the panel elastic buckling is allowed, it is necessary to get precise understandings about the post-buckling behaviour of thin plates. It is well known that a thin flat plate undergoes secondary buckling after initial buckling took place and the deflection of the initial buckling mode was developed. From this point of view, this paper discusses the post-buckling behaviour of thin plates under thrust including the secondary buckling phenomenon. Series of elastic large deflection analyses were performed on rectangular plates with aspect ratio 3.6 using the analytical method and the FEM.

  • PDF

Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells with varying sinusoidal thickness

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Lee, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1001-1020
    • /
    • 2016
  • The study is to investigate the free vibration of antisymmetric angle-ply conical shells having non-uniform sinusoidal thickness variation. The arbitrarily varying thickness is considered in the axial direction of the shell. The vibrational behavior of shear deformable conical shells is analyzed for three different support conditions. The coupled differential equations in terms displacement and rotational functions are obtained. These displacement and rotational functions are invariantly approximated using cubic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration characteristic of the shells is examined for cone angle, aspect ratio, sinusoidal thickness variation, layer number, stacking sequence, and boundary conditions.

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

Optimal Design of Viscoelastic Dampers in Building Frames by Eigenvalue Assignment (건축구조물에서 고유값 지전에 의한 점탄성 감쇠기의 최적설계)

  • Son, Dong-In;Lee, Sang-Hyun;Park, Ji-Hun;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.125-138
    • /
    • 2001
  • 고유진동수와 감쇠비는 지진이나 바람과 같은 동적 횡하중에 대해 구조물의 응답을 결정하는 주요한 특성이다. 본 연구는 지진하중에 대하여 목표응답 수준을 만족하는 구조물의 고유진동수와 감쇠비를 지정하고, 이 값을 실현하는 점탄성 감쇠기 파라미터의 처적분포를 구하는 설계방법을 제안한다. 여기서 지정할 고유진동수와 감쇠비는 목표응답 수준을 만족하는 여러 조합 중 설계조건과 원래 건물의 특성에 따라 결정될 수 있다. 제안한 설계방법은 점탄성 감쇠기의 감성 파라미터를 고유값의 기울기 정보를 바탕으로 분포시키므로 최적 위치와 크기에 대한 정보를 동시에 제공한다. 예제로서 평면 10층 전단 건물을 대상으로 최적설계를 수행하여 지정된 고유값을 실현하는 파라미터의 최적분포를 구하고 이를 통해 제안한 최적 설계의 특성을 확인하였다. 또한 더 나아가 3차원 일방향 비대칭 전단전물에 제안된 최적설계를 수행하여 그에 대한 적용가능성을 확인하였다.

  • PDF

Nonlinear Oscillation Characteristics in Combination Resonance Region Considering Damping Effects (조합공진 영역에서 감쇠의 영향을 고려한 비선형 진동 응답 특성)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.849-855
    • /
    • 2010
  • Damping may change the response characteristics of nonlinear oscillations due to the parametric excitation of a thin cantilever beam. When the natural frequencies of the first bending and torsional modes are of the same order of magnitude, we can observe the one-to-one combination resonance in the perturbation analysis depending on the characteristic parameters. The nonlinear behavior about the combination resonance reveals a chaotic motion depending on the natural frequencies and damping ratio. We can analyze the chaotic dynamics by using the eigenvalue analysis of the perturbed components. In this paper, we derived the equations for autonomous system and solved them to obtain the characteristic equation. The stability analysis was carried out by examining the eigenvalues. Numerical integration gave the physical behavior of each mode for given parameters.

Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach

  • Asghar, Sehar;Naeem, Muhammad N.;Hussain, Muzamal;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.599-613
    • /
    • 2020
  • In this article, free vibration attributes of double-walled carbon nanotubes based on nonlocal elastic shell model have been investigated. For this purpose, a nonlocal Flügge shell model is established to observe the small scale effect. The wave propagation is employed to frame the governing equations as eigenvalue system. The influence of nonlocal parameter subjected to different end supports has been overtly examined. A suitable choice of material properties and nonlocal parameter been focused to analyze the vibration characteristics. The new set of inner and outer tubes radii investigated in detail against aspect ratio and length. The dominance of boundary conditions via nonlocal parameter is shown graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

Viscoelastic Damping Treatment Analysis and Aeroelasticity for Vibration Reductions of a Hingeless Composite Helicopter Rotor System (무힌지 복합재 헬리콥터 로터 시스템의 진동 저감을 위한 점탄성 감쇠처리 해석 및 공탄성 연구)

  • Hwang, Ho-Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.6-14
    • /
    • 2007
  • In this research, vibration reduction and aeroelastic stability of a composite hingeless rotor hub flexure with viscoelastic constrained layer damping treatment(CLDT) were investigated. The composite flexures with viscoelastic CLDT were applied to hingeless rotor system to improve the in-plane stability of the lead-lag motion causing resonance. The modal test was performed and dynamic properties(natural frequency and loss factor) were acquired. Also, complex eigenvalue analysis(SOLlO7) in the NASTRAN structural analysis module was performed and compared with results of the modal test. To insure aeroelastic stability, damping ratio analyses of the hingeless rotor system with CLDT were accomplished at hovering condition due to collective pitch angle changes. Satisfactory results of increasing structural damping and stability were obtained.

  • PDF

Buckling and Optimum Reinforcement of Axially Stiffened Cylindrical Shells (보강(補剛) 원통 Shell의 좌굴(挫屈) 및 최적보강(最適補强))

  • Jang, Chang-Doo;Nho, Wan
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 1987
  • The energy expressions are formulated for the axially stiffened shell treating the stiffeners as discrete elements. The principle of minimum potential energy is employed to formulate the buckling equations for a simply supported, axially stiffened shell under uniform axial compression. The displacement functions are expended into double trigonometric series. The mode assuming method employed in this paper makes it possible to reduce the matrix size of the eigenvalue problem considerably. Effects are made to investigate the transition from overall buckling to local buckling and to verify the existence of the minimum stiffness ratio of stiffener as in the case of stiffened plate. The results of the calculation show that the critical stiffener size increase linearly as the length of the shell increases. The results also show that the overall buckling load decreases and the local buckling load has a nearly constant value as the length of the shell increases. The results show very good agreements with other computational available.

  • PDF