• Title/Summary/Keyword: Eigenpair

Search Result 18, Processing Time 0.02 seconds

Integrated Structural and PD-Control Optimization of Flexible Rotor Supported by Active Magnetic Bearings

  • Jeon, Han-Wook;Lee, Chong-Won;Watanabe, Toru
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.736-742
    • /
    • 2008
  • This paper proposes new searching algorithm for the optimal PD gains of flexible rotor supported by active magnetic bearings. Under the assumption of linearized bearing parameters with respect to PD gains, the performance index in quadratic form is defined and steepest descent method is adopted for determining local minimum. Moreover, the eigenpair sensitivity concept is utilized to evaluate the sensitivity of performance index. To evaluate the effectiveness of suggested algorithm, the finite element model is constructed and its reduced model is retained in modal domain. Given starting gains, the optimal gains are successfully found and the control performance is demonstrated by simulation to show the efficiency of the proposed method.

  • PDF

A Synchronous/Asynchronous Hybrid Parallel Power Iteration for Large Eigenvalue Problems by the MPMD Methodology (MPMD 방식의 동기/비동기 병렬 혼합 멱승법에 의한 거대 고유치 문제의 해법)

  • Park, Pil-Seong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.1
    • /
    • pp.67-74
    • /
    • 2004
  • Most of today's parallel numerical schemes use synchronous algorithms, where some processors that have finished their tasks earlier than others must wait at synchronization points for correct computation. Hence overall performance of the system is dependent upon the speed of the slowest processor. In this paper, we det·ise a synchronous/asynchronous hybrid algorithm to accelerate convergence of the solution for finding the dominant eigenpair of a large matrix, by reducing the idle times of faster processors using MPMD programming methodology.

Modified Modal Method for Eigenderivative Analysis of Asymmetric Damped System (비대칭 감쇠 시스템의 고유진동수와 모드의 미분을 구하기 위한 모드법 의 개선)

  • 문영종;박선규;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.125-130
    • /
    • 2001
  • It is well known that many real systems have asymmetric mass, damping and stiffness matrices. In this case, the method for calculating eigenpair sensitivity is different from that of symmetric system. To determine the derivatives of the eigenpairs in asymmetric damped case, a modal method was recently developed by Adhikari. When a dynamic system has many degrees of freedom, only a few lower modes are available, and because the higher modes should be truncated to use the modal method, the errors may become significant. In this paper a procedure for determining the sensitivities of the eigenpairs of asymmetric damped system using a few lowest set of modes is proposed. Numerical examples show that proposed method achieves better calculating efficiency and highly accurate results when a few modes are used.

  • PDF

Improved Algebraic Method for Computing Eigenpair Sensitivities of Damped System (감쇠 시스템의 고유진동수와 모드의 미분을 구하기 위한 대수적 방법의 개선)

  • Jo, Hong-Ki;Ko, Man-Gi;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.501-507
    • /
    • 2000
  • This paper presents a very simple procedure for determining the sensitivities of the eigenpairs of damped vibratory system with distinct eigenvalues. The eigenpairs derivatives can be obtained by solving algebraic equation with a symmetric coefficient matrix whose order is (n+1) ${\times}$ (n+1), where n is the number of degree of freedom the mothod is an improvement of recent work by I. W. Lee, D. O. Kim and G. H. Jung; the key idea is that the eigenvalue derivatives and the eigenvector derivatives are obtained at once via only one algebraic equation, instead of using two equations separately as like in Lee and Jung's method. Of course, the method preserves the advantages of Lee and Jung's method.

  • PDF

Modified Modal Method for Eigenderivative Analysis of Asymmetric Damped System (비대칭 감쇠 시스템의 고유진동수와 모드의 미분을 구하기 위한 모드법의 개선)

  • 문영종;박선규;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.509-514
    • /
    • 2001
  • It is well known that many real systems have asymmetric mass, damping and stiffness matrices. In this case, the method for calculating eigenpair sensitivity is different from that of symmetric system. To determine the derivatives of the eigenpairs in asymmetric damped case, a modal method was recently developed by Adhikari. When a dynamic system has many degrees of freedom only a few lower modes are available, and because the higher modes should be truncated to use the modal method, the errors may become significant. In this paper a procedure for determining the sensitivities of the eigenpairs of asymmetric damped system using a few lowest set of modes is proposed. Numerical examples show that proposed method achieves better calculating efficiency and highly accurate results when a few modes are used.

  • PDF

Modified Modal Methods for Sensitivity Analysis of Asymmetric Damped System (비대칭 감쇠 시스템의 민감도 해석을 위한 개선된 모드법)

  • Moon, Yeong-Jong;Jo, Ji-Seong;Oh, Ju-Won;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.530-533
    • /
    • 2004
  • It is well known that many real systems have asymmetric mass, damping and stiffness matrices. In this case, the method for calculating eigenpair sensitivity is different from that of symmetric system. To determine the derivatives of the eigenpairs in asymmetric damped case, a modal method was recently developed by Adhikari. When a dynamic system has many degrees of freedom, only a few lower modes are available, and because the higher modes should be truncated to use the modal method, the errors may become significant. In this paper a procedure for determining the sensitivities of the eigenpairs of asymmetric damped system using a few lowest set of modes is proposed. Numerical examples show that proposed method achieves better calculating efficiency and highly accurate results when a few modes are used.

  • PDF

AN ASSESSMENT OF PARALLEL PRECONDITIONERS FOR THE INTERIOR SPARSE GENERALIZED EIGENVALUE PROBLEMS BY CG-TYPE METHODS ON AN IBM REGATTA MACHINE

  • Ma, Sang-Back;Jang, Ho-Jong
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.435-443
    • /
    • 2007
  • Computing the interior spectrum of large sparse generalized eigenvalue problems $Ax\;=\;{\lambda}Bx$, where A and b are large sparse and SPD(Symmetric Positive Definite), is often required in areas such as structural mechanics and quantum chemistry, to name a few. Recently, CG-type methods have been found useful and hence, very amenable to parallel computation for very large problems. Also, as in the case of linear systems proper choice of preconditioning is known to accelerate the rate of convergence. After the smallest eigenpair is found we use the orthogonal deflation technique to find the next m-1 eigenvalues, which is also suitable for parallelization. This offers advantages over Jacobi-Davidson methods with partial shifts, which requires re-computation of preconditioner matrx with new shifts. We consider as preconditioners Incomplete LU(ILU)(0) in two variants, ever-relaxation(SOR), and Point-symmetric SOR(SSOR). We set m to be 5. We conducted our experiments on matrices from discretizations of partial differential equations by finite difference method. The generated matrices has dimensions up to 4 million and total number of processors are 32. MPI(Message Passing Interface) library was used for interprocessor communications. Our results show that in general the Multi-Color ILU(0) gives the best performance.

Natural Frequency and Mode Shape Sensitivities of Damped Systems with Multiple Natural Frequencies (중복근을 갖는 감쇠 시스템의 고유진동수와 모드의 민감도)

  • 최강민;고만기;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.117-124
    • /
    • 2001
  • A simplified method fur the eigenpair sensitivities of damped system with multiple eigenvalues is presented. This approach employs a reduced equation to determine the sensitivities of eigenpairs of the damped vibratory systems with multiple natural frequencies. In the proposed method, adjacent eigenvectors and orthonormal conditions are used to compute an algebraic equation whose order is (n+m)x(n+m), where n is the number of coordinates and m the number of multiplicity of multiple natural frequencies. The proposed method is an improved Lee and Jung's method which was developed previously. Two equations are used to find eigenvalue derivatives and eigenvector derivatives in Lee and Jung's method. A significant advantage of this approach over Lee and Jung's method is that one algebraic equation newly developed is enough to compute such eigenvalue derivatives and eigenvector derivatives. This method can be consistently applied to both structural systems with structural design parameters and mechanical systems with lumped design parameters. To demonstrate the theory of the proposed method and its possibilities in the case of multiple eigenvalues, the finite element model of the cantilever beam and 5-DOF mechanical system in the case of a non-proportionally damped system are considered as numerical examples. The design parameter of the cantilever beam is its height. and that of the 5-DOF mechanical system is a spring.

  • PDF