• Title/Summary/Keyword: Eigen transform

Search Result 30, Processing Time 0.027 seconds

Comparison of Ensemble Perturbations using Lorenz-95 Model: Bred vectors, Orthogonal Bred vectors and Ensemble Transform Kalman Filter(ETKF) (로렌쯔-95 모델을 이용한 앙상블 섭동 비교: 브레드벡터, 직교 브레드벡터와 앙상블 칼만 필터)

  • Chung, Kwan-Young;Barker, Dale;Moon, Sun-Ok;Jeon, Eun-Hee;Lee, Hee-Sang
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.217-230
    • /
    • 2007
  • Using the Lorenz-95 simple model, which can simulate many atmospheric characteristics, we compare the performance of ensemble strategies such as bred vectors, the bred vectors rotated (to be orthogonal to each bred member), and the Ensemble Transform Kalman Filter (ETKF). The performance metrics used are the RMSE of ensemble means, the ratio of RMS error of ensemble mean to the spread of ensemble, rank histograms to see if the ensemble member can well represent the true probability density function (pdf), and the distribution of eigen-values of the forecast ensemble, which can provide useful information on the independence of each member. In the meantime, the orthogonal bred vectors can achieve the considerable progress comparing the bred vectors in all aspects of RMSE, spread, and independence of members. When we rotate the bred vectors for orthogonalization, the improvement rate for the spread of ensemble is almost as double as that for RMS error of ensemble mean compared to the non-rotated bred vectors on a simple model. It appears that the result is consistent with the tentative test on the operational model in KMA. In conclusion, ETKF is superior to the other two methods in all terms of the assesment ways we used when it comes to ensemble prediction. But we cannot decide which perturbation strategy is better in aspect of the structure of the background error covariance. It appears that further studies on the best perturbation way for hybrid variational data assimilation to consider an error-of-the-day(EOTD) should be needed.

Development of Range-Dependent Ray Model for Sonar Simulator (소나 시뮬레이터용 거리 종속 음선 모델 개발)

  • Jung, Young-Cheol;Lee, Keunhwa;Seong, Woojae;Kim, Hyoung-Rok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.163-173
    • /
    • 2014
  • Sound propagation algorithm for a sonar simulator is required to run in real-time and should be able to model the range and depth dependence of the Korean ocean environments. Ray model satisfies these requirements and we developed an algorithm for range-dependent ocean environments. In this algorithm, we considered depth-dependence of sound speed through rays based on a rectangular cell method and layer method. Range-dependence of sound speed was implemented based on a split-step method in the range direction. Eigen-ray is calculated through an interpolation of ray bundles and Gaussian interpolation function was used. The received time signal of sonar was simulated by Fourier transform of eigen-ray solution in the frequency domain. Finally, for the verification of proposed algorithm, we compared the results of transmission loss with other validated models such as BELLHOP, SNUPE, KRAKEN and OASES, for the Pekeris waveguide, wedge, and deep ocean environments. As a result, we obtained satisfactory agreements among them.

A Fourier sine series solution of static and dynamic response of nano/micro-scaled FG rod under torsional effect

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.467-482
    • /
    • 2022
  • In the current work, static and free torsional vibration of functionally graded (FG) nanorods are investigated using Fourier sine series. The boundary conditions are described by the two elastic torsional springs at the ends. The distribution of functionally graded material is considered using a power-law rule. The systems of equations of the mechanical response of nanorods subjected to deformable boundary conditions are achieved by using the modified couple stress theory (MCST) and taking the effects of torsional springs into account. The idea of the study is to construct an eigen value problem involving the torsional spring parameters with small scale parameter and functionally graded index. This article investigates the size dependent free torsional vibration based on the MCST of functionally graded nano/micro rods with deformable boundary conditions using a Fourier sine series solution for the first time. The eigen value problem is constructed using the Stokes' transform to deformable boundary conditions and also the convergence and accuracy of the present methodology are discussed in various numerical examples. The small size coefficient influence on the free torsional vibration characteristics is studied from the point of different parameters for both deformable and rigid boundary conditions. It shows that the torsional vibrational response of functionally graded nanorods are effected by geometry, small size effects, boundary conditions and material composition. Furthermore, for all deformable boundary conditions in the event of nano-sized FG nanorods, the incrementing of the small size parameters leads to increas the torsional frequencies.

Anomaly Detection from Hyperspectral Imagery using Transform-based Feature Selection and Local Spatial Auto-correlation Index (자료 변환 기반 특징 선택과 국소적 자기상관 지수를 이용한 초분광 영상의 이상값 탐지)

  • Park, No-Wook;Yoo, Hee-Young;Shin, Jung-Il;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.357-367
    • /
    • 2012
  • This paper presents a two-stage methodology for anomaly detection from hyperspectral imagery that consists of transform-based feature extraction and selection, and computation of a local spatial auto-correlation statistic. First, principal component transform and 3D wavelet transform are applied to reduce redundant spectral information from hyperspectral imagery. Then feature selection based on global skewness and the portion of highly skewed sub-areas is followed to find optimal features for anomaly detection. Finally, a local indicator of spatial association (LISA) statistic is computed to account for both spectral and spatial information unlike traditional anomaly detection methodology based only on spectral information. An experiment using airborne CASI imagery is carried out to illustrate the applicability of the proposed anomaly detection methodology. From the experiments, anomaly detection based on the LISA statistic linked with the selection of optimal features outperformed both the traditional RX detector which uses only spectral information, and the case using major principal components with large eigen-values. The combination of low- and high-frequency components by 3D wavelet transform showed the best detection capability, compared with the case using optimal features selected from principal components.

A DCT Adaptive Subband Filter Algorithm Using Wavelet Transform (웨이브렛 변환을 이용한 DCT 적응 서브 밴드 필터 알고리즘)

  • Kim, Seon-Woong;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.46-53
    • /
    • 1996
  • Adaptive LMS algorithm has been used in many application areas due to its low complexity. In this paper input signal is transformed into the subbands with arbitrary bandwidth. In each subbands the dynamic range can be reduced, so that the independent filtering in each subbands has faster convergence rate than the full band system. The DCT transform domain LMS adaptive filtering has the whitening effect of input signal at each bands. This leads the convergence rate to very high speed owing to the decrease of eigen value spread Finally, the filtered signals in each subbands are synthesized for the output signal to have full frequency components. In this procedure wavelet filter bank guarantees the perfect reconstruction of signal without any interspectra interference. In simulation for the case of speech signal added additive white gaussian noise, the suggested algorithm shows better performance than that of conventional NLMS algorithm at high SNR.

  • PDF

Time Delay Estimation of Two Signals in Wavelet Transform Domain (WT 평면에서의 두 신호 시지연 추정)

  • Kim, Jae-Kuk;Lee, Young-Seok;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.5-10
    • /
    • 1997
  • In this paper, a new time delay estimation algorithm, WTD-LMSTDE was proposed. This method has great improvement in convergence rate relative to the time domain approach by decreasing the eigen value spread of input signal autocorrelation matrix. The performance of the algorithm was evaluated for the cases of time invariant time delay and time varying time delay. In the case of time invariant time delay, the estimation accuracy of WTD-LMSTDE was better than that of LMSTDE from 3.3% to 12.5% with respect to SNR. In the case of time varying time delay, the mean error power of WTD-LMSTDE in linear increased delay environment was decreased about 2.4dB compared to that of LMSTDE under noise-free condition. As a result, we showed that the performance of WTD-LMSTDE is better than of LMSTDE.

  • PDF

Speaker Recognition Using Optimal Path and Weighted Orthogonal Parameters (최적경로와 가중직교인자를 이용한 화자인식)

  • Park, Seung-Kyu;Bai, Chul-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.68-72
    • /
    • 1992
  • Recently, many researchers have studied the speaker recognition through the statistical processing method using Karhunen-Loeve Transform. However, the content of speaker's identity and the vocalization speed cause speaker recognition rate to be lowered. This parer studies the speaker recognition method using weighted orthogonal parameters which are weighted with eigen-values of speech so as to emphasize the speaker's identity, and optimal path which is made by DWP so as to normalize dynamic time feature of speech. To confirm this method, we compare the speaker recognition rate from this proposed method with that from the conventional statistical processing method. As a result, it is shown that this method is more excellent in speaker recognition rate than conventional method.

  • PDF

Fast Scattered-Field Calculation using Windowed Green Functions (윈도우 그린함수를 이용한 고속 산란필드 계산)

  • 주세훈;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1122-1130
    • /
    • 2001
  • In this paper, by applying the spectral domain wavelet concept to Green function, a fast spectral domain calculation of scattered fields is proposed to get the solution for the radiation integral. The spectral domain wavelet transform to represent Green function is implemented equivalently in space via the constant-Q windowing technique. The radiation integral can be calculated efficiently in the spectral domain using the windowed Green function expanded by its eigen functions around the observation region. Finally, the same formulation as that of the conventional fast multipole method (FMM) is obtained through the windowed Green function and the spectral domain calculation of the radiation integral.

  • PDF

Speaker Recognition Using Optimal Path and Weighted Orthogonal Parameters (최적경로와 가중직교인자를 이용한 화자인식)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1539-1544
    • /
    • 2003
  • Recently, many researchers have studied the speaker recognition through the statistical processing method using Karhonen-Loeve Transform. However, the content of speaker's identity and the vocalization speed cause speaker recognition rate to be lowered. This parer studies the speaker recognition method using weighted parameters which are weighted with eigen-values of speech so as to emphasize the speaker's identity and optimal path which is made by DWP so as to normalize dynamic time feature of speech. To confirm this method, we compare the speaker recognition rate from this proposed method with that from the conventional statistical processing method. As a result, it is shown that this method is more excellent in speaker recognition rate than conventional method.

Analysis of Smart Antenna Performance Improving the Robustness of OFDM to Rayleigh Fading (레일리 페이딩 내구성을 개선시키는 OFDM 스마트안테나의 성능 분석)

  • Hong, Young-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.53-60
    • /
    • 2011
  • In order to augment the robustness of OFDM system to Rayleigh multipath fading, there exist two smart antenna algorithms, namely, Pre-FFT smart antenna and Post-FFT smart antenna. After the mathematical modeling of both smart antenna algorithms, computer simulations have been carried to compare and analyze the performance of generalized eigen problem based Pre-FFT algorithm and the performance of Wiener solution based Post-FFT algorithm. It has been shown that the Post-FFT smart antenna far outperforms the Pre-FFT smart antenna due to the computational complexities. Especially it is so when the multipath signal arrives at beyond the guard interval and a rich co-channel interferer is introduced. Performance of a subcarrier clustering method proposed to lessen the computing load has been compared to that of a typical Wiener solution based Post-FFT smart antenna. Performance comparison between MRC(Maximum Ratio Combining) diversity based Post-FFT algorithm and typical Post-FFT algorithm has also been carried.