• Title/Summary/Keyword: Eigen Decomposition

Search Result 48, Processing Time 0.022 seconds

Signal Parameters Estimation in Array Sensors via Nonlinear Minimization. (비선형 최소화 방법을 이용한 수신신호의 파라미터 추정알고리즘에 관한 연구)

  • Jeong, Jung-Sik;Park, Sung-Hyeon;Kim, Chul-Seung;Ahn, Young-sup
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.305-309
    • /
    • 2004
  • The problem for parameters estimation of the received signals impinging on array sensors has long been of great research interest in a great variety of applications, such as radar, sonar, and land mobile communications systems. Conventional subspace-based algorithms, such as MUSIC and ESPRIT, require an extensive computation of inverse matrix and eigen-decomposition. In this paper, we propose a new parameters estimation algorithm via nonlinear minimization, which is simplified computationally and estimates signal parameters simultaneously.

  • PDF

A Study on Target Incident Signal Estimaion Technique of spatial Spectrum in Wireless Network System (공간 영역 신호에서 다중 빔 형성을 이용한 목표물 추정 방법에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myeong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • Direction of arrival is estimating for desire signal direction among received signal on antenna in spatial. In this paper, we were an estimation a receiving signal direction of arrival using multi beam forming in radar. We proposed, by signal direction of arrival estimation method, an algorithm which combine spatial correlation matrix weight value and beam steering algorithm in this paper. Through simulation, we were analysis a performance to compare general algorithm and proposal algorithm. In direction of arrival estimation, proposed algorithm is effectivity to decrease processing time because it is not doing an eigen decomposition. We showed that proposal algorithm improve more target estimation than general algorithm.

Dynamic stiffness based computation of response for framed machine foundations

  • Lakshmanan, N.;Gopalakrishnan, N.;Rama Rao, G.V.;Sathish kumar, K.
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-142
    • /
    • 2009
  • The paper deals with the applications of spectral finite element method to the dynamic analysis of framed foundations supporting high speed machines. Comparative performance of approximate dynamic stiffness methods formulated using static stiffness and lumped or consistent or average mass matrices with the exact spectral finite element for a three dimensional Euler-Bernoulli beam element is presented. The convergence of response computed using mode superposition method with the appropriate dynamic stiffness method as the number of modes increase is illustrated. Frequency proportional discretisation level required for mode superposition and approximate dynamic stiffness methods is outlined. It is reiterated that the results of exact dynamic stiffness method are invariant with reference to the discretisation level. The Eigen-frequencies of the system are evaluated using William-Wittrick algorithm and Sturm number generation in the $LDL^T$ decomposition of the real part of the dynamic stiffness matrix, as they cannot be explicitly evaluated. Major's method for dynamic analysis of machine supporting structures is modified and the plane frames are replaced with springs of exact dynamic stiffness and dynamically flexible longitudinal frames. Results of the analysis are compared with exact values. The possible simplifications that could be introduced for a typical machine induced excitation on a framed structure are illustrated and the developed program is modified to account for dynamic constraint equations with a master slave degree of freedom (DOF) option.

The Study of Direction Finding Algorithms for Coherent Multiple Signals in Uniform Circular Array (등각원형배열을 고려한 코히어런트 다중신호 방향탐지 기법 연구)

  • Park, Cheol-Sun;Lee, Ho-Joo;Jang, Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • In this paper, the performance of AP(Alternating Projection) and EM(Expectation Maximization) algorithms is investigated in terms of detection of multiple signals, resolvability of coherent signals and the efficiency of sensor array processing. The basic idea of these algorithms is utilization of relaxation technique of successive 1D maximization to solve a direction finding problem by maximizing the multidimensional likelihood function. It means that the function is maximized over only for a single parameter while the other parameters are fixed at each step of the iteration. According to simulation results, the algorithms showed good performance for both incoherent and coherent multiple signals. Moreover, some advantages are identified for direction finding with very small samples and fast convergence. The performance of AP algorithm is compared with that of EM using multiple criteria such as the number of sensor, SNR, the number of samples, and convergence speed over uniform circular array. It is resulted AP algorithm is superior to EM overally except for one criterion, convergence speed. Especially, for EM algorithm there is no performance difference between incoherent and coherent case. In conclusion, AP and EM are viable and practical alternatives, which can be applied to a direction under due to the resolvability of multi-path signals, reliable performance and no troublesome eigen-decomposition of the sample-covariance matrix.

MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space (3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화)

  • Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

Adaptive Antenna Array for DOA Estimation Utilizing Orthogonal Weight Searching (직교가중치 탐색방법을 이용한 도착방향 추정 적응어레이 안테나)

  • 오정호;최승원;이현배;황영준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.116-125
    • /
    • 1997
  • This paper presents a novel method, entitled Orthogonal Weights Searching(OWS), for the Direction-Of-Arrival(DOA) estimation. Utilizing the modified Conjugate Gradient Method(MCGM), the weight vector which is orthogonal to the signal subspace is directly computed from the signal matrix. The proposed method does not require the computation of the eigenvalues and eigenvectors. In addition, the new technique excludes the procedure for the detection of the number of signals under the assumption that the number of weights in the array is greater than the number of input signals. Since the proposed technique can be performed independently of the detection procedure, it shows a good performance in adverse signal environments in which the detection of the number of array inputs cannot be obtained successfully. The performance of the proposed technique is compared with that of the convectional eigen-decomposition method in terms of angle resolution for a given signal-to-noise ratio(SNR) and a required amount of computations.

  • PDF

A layered-wise data augmenting algorithm for small sampling data (적은 양의 데이터에 적용 가능한 계층별 데이터 증강 알고리즘)

  • Cho, Hee-chan;Moon, Jong-sub
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2019
  • Data augmentation is a method that increases the amount of data through various algorithms based on a small amount of sample data. When machine learning and deep learning techniques are used to solve real-world problems, there is often a lack of data sets. The lack of data is at greater risk of underfitting and overfitting, in addition to the poor reflection of the characteristics of the set of data when learning a model. Thus, in this paper, through the layer-wise data augmenting method at each layer of deep neural network, the proposed method produces augmented data that is substantially meaningful and shows that the method presented by the paper through experimentation is effective in the learning of the model by measuring whether the method presented by the paper improves classification accuracy.

Time delay estimation between two receivers using basis pursuit denoising (Basis pursuit denoising을 사용한 두 수신기 간 시간 지연 추정 알고리즘)

  • Lim, Jun-Seok;Cheong, MyoungJun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.285-291
    • /
    • 2017
  • Many methods have been studied to estimate the time delay between incoming signals to two receivers. In the case of the method based on the channel estimation technique, the relative delay between the input signals of the two receivers is estimated as an impulse response of the channel between the two signals. In this case, the characteristic of the channel has sparsity. Most of the existing methods do not take advantage of the channel sparseness. In this paper, we propose a time delay estimation method using BPD (Basis Pursuit Denoising) optimization technique, which is one of the sparse signal optimization methods, in order to utilize the channel sparseness. Compared with the existing GCC (Generalized Cross Correlation) method, adaptive eigen decomposition method and RZA-LMS (Reweighted Zero-Attracting Least Mean Square), the proposed method shows that it can mitigate the threshold phenomenon even under a white Gaussian source, a colored signal source and oceanic mammal sound source.