• Title/Summary/Keyword: Egg development

Search Result 985, Processing Time 0.027 seconds

A Timetable of the Early Development Stage of Silkies Embryo

  • Li, B.C.;Chen, G.H.;Qin, J.;Wang, K.H.;Xiao, X.J.;Xie, K.Z.;Wu, X.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.800-805
    • /
    • 2003
  • The early embryos are obtained in different time after the former egg had been laid, and the aim of the present study was to observe the development law of chicken early embryo.The embryo development has been divided into the two periods according to morphology of blastodisc. Cleavage period, from 5.5 h (0 h uterine age) to 15.5 h (10-10.5 h uterine age) after the former egg had laid, formation blastodisc of 6-7 layers cell. Later blastocyst period, from 17.5 h (12-12.5 h uterine age) to area pellucida formation after the former egg had been laid. The first division took place at 5 h (0 h uterine age), morular at 11.5 h (6-6.5 h uterine age), and blastocyst at 15.5 h (10-10.5 h uterine age) after the former egg had been laid.

The Effect of PH and Salinity on Egg Development of Urechis unicinctus (von Drasche) in Southern Korea. (한국산 개불, Urechis unicinctus (von Drasche)의 난 발생에 미치는 pH와 염분의 영향)

  • 최상덕;김호진;라성주;홍성윤;이원교;이우범
    • Journal of Aquaculture
    • /
    • v.12 no.2
    • /
    • pp.155-161
    • /
    • 1999
  • In order to obtain the basic information for seeding production of Echiuroid worm, Urechis unicinctus, the influence of pH and salinity on egg development was investigated. Mature adult of U. unicinctus were collected at the Diving Cooperation of Yosu in Korea and reared during 5 weeks. We carried out the artificial insemination in the laboratory on Dec. 29, 1998, and reared the embryo under different pH and salinity. Treatments were carried out with different pH(4~10) and salinity($0~45\textperthousand$). Embryos in pH 4, salinity $0\textperthousand$, $10\textperthousand$, $40\textperthousand$ and $45\textperthousand$ tanks did not develope after fertilization and became deformed or dead, before swimming embryo. In these pH and salinity conditions, deformation rate of embryo was high at 8-cell stage and 16-cell stage. But embryos in pH 5~10, salinity $20~35\textperthousand$ tanks developed into swimming embryo stage. These result indicate that an echiuran inhabits in both intertidal and subtidal mudflates. After fertilization, sixteen-cell stage took 5.3~5.6 hours in pH 5~10 tanks, and 5.1~5.8 hours in $20~35\textperthousand$ tanks. And swimming embryo took 13.3~ 14.1 hours in all conditions. The desirable pH and salinity for egg development were 7~8 and $30\textperthousand$, respectively.

  • PDF

Morphological Development of Eggs, Larvae and Juveniles of the Misgrunus anguillicaudatus (Cypriniformes: Cobitidae) (미꾸리 Misgrunus anguillicaudatus (Cypriniformes: Cobitidae)의 난발생 및 자치어 형태발달)

  • Park, Jae-Min;Yoo, Dong-Jae;Son, Jun-Hyeok;Han, Kyeong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • This study was carried out to clarify the egg, larvae and juveniles development of Misgurnus anguillicaudatus, and relationships of M. anguillicaudatus and M. mizolepis, Cobitididae Fishes. The adult fishes were collected in Samsan-cheon, Haenam-gun, Jeollanam-do, Korea and their spawning inducement was carried by ovaprim injections. The egg shape was circular and the size was average 1.12 mm. The eggs were hatched at 61 to 72 h after fertilization. The newly hatched larvae had an average 3.23 mm in total length (TL). At 5 days after hatching, the larvae reached to post larval stage and they were 10.3 mm in TL. At 19 days after hatching, it reached to juvenile stage and was 25.3 mm in TL. The egg size of M. anguillicaudatus was almost same as M. mizolepis but the hatching period of M. anguillicaudatus has taken longer. It was possible for interspecific distinguishability of M. anguillicaudatus and M. mizolepis when their larvae reached to juvenile stage by the development of keel-like ridges.

Freezing Preservation of Liquid Egg by Freezing Point Depression (빙점강하에 의한 액란의 냉동저장에 관한 연구)

  • Lee, Young-Chun;Lee, Kyung-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.594-599
    • /
    • 1988
  • Methods by which liquid egg could be stored in liquid state at frozen storage temperature$(-15^{\circ}C)$ with selected cryoprotectants and enzyme treatment were investiated, and quality changes in samples during storage were examined. The concentration of cryoprotectants (45% fructose and 55% glucose) to be added to egg yolk and whole egg to store them at $-15^{\circ}C$ in unfrozen state were 45.2% and 70.3%, respectively. Changes in consistency, precipitation of protein and microstructure of egg samples during storage indicated that adding cryoprotectants to liquid egg could effectively inhibit development of gelation during storage at $-15^{\circ}C$. Treating liquid egg with 0.15% papain could inhibit gelation during storage to some extent.

  • PDF

Relationship between Egg Productivity and IGF-I Genotypes in Korean Native Ogol Chicken

  • Kim, M. H.;W. J. Kang;D. S. Seo;Y. Ko
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.95-95
    • /
    • 2003
  • Endocrine factors, such as steroid hormones and growth factors, regulate egg productivity including the number of egg production, egg weight, sexual maturity, and the number of small yellow follicles. Especially, insulin-like growth factor-I (IGF-I) is involved in the regulation of ovulation rate and ovarian follicular development in chickens, and the relationship between IGF-I genotype and egg weight was reported. However, the effect of grwoth factors on egg productivity in Korean Native Ogol Chicken (KNOC) has not been studied. Therefore this study was conducted to identify the relationship among endocrine factors, IGF-I genotypes, and egg productivity. IGF-I genotypes (AA, AB, BB) were represented to 12.6%, 34%, and 53.4%, respectively. AB genotype stimulates the secretion of estradiol and progesterone in serum (30 and 40 week), regulates growth and proliferation of follicles at 60 weeks, and is positively associated with the number of small yellow follicles. Therefore, these results suggest that there are possibility to IGF-I genotypes for a genetic marker in egg productivity of KNOC.

  • PDF

Breeding Habits and Egg Development of the Goby, Micropercops swinhonis (좀구굴치 ( Micropercops swinhonis ) 의 산란습성 및 초기 난발생)

  • Kim, Ik-Soo;Byung-Jik Kim
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.477-486
    • /
    • 1996
  • The freshwater goby, Micropercops swinhonis ($G\"{u}nther$) was studied on the spawning behavior and egg develeopment at the two areas of Chollabukdo, Korea from March to May 1995. Egg mass attached to a layer under stones and the inner wall of waterplant, Cyperus. Spawning behavior was divided in to 1) premating stage: selecting spawning sites and formation of territory by male, 2) mating stage: enticement with zigzag-like dance and intermittant shaking of head by male and fertilization, 3) postmating stage: fanning, guarding and cleaning the nest by male. The eggs were transparent and spherical in shape, measuring $0.9\times1.4mm$ with yellowish yolk sac and many oil globules. Hatching began in about ten days after fertilization at water temperature $16~20^{\circ}C$. The newly hatched larvae were 3.8~4.0 mm in total length with 30 myomeres and their mouths and anuses were opened. Melanophores appeared at the air-bladder and the ventral side of caudal region.gion.

  • PDF

Production of Intracellular Calcium Oscillation by Phospholipase C Zeta Activation in Mammalian Eggs

  • Yoon, Sook-Young;Kang, Da-Won
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.197-204
    • /
    • 2011
  • Egg activation is a crucial step that initiates embryo development upon breaking the meiotic arrest. In mammalian, egg activation is accomplished by fusion with sperm, which induces the repeated intracellular $Ca^{2+}$- increases ($[Ca^{2+}]_i$ oscillation). Researches in mammals support the view of the $[Ca^{2+}]_i$ oscillation and egg activation is triggered by a protein factor from sperm that causes $[Ca^{2+}]_i$ release from endoplasmic reticulum, intracellular $[Ca^{2+}]_i$ store, by persistently activation of phosphoinositide pathway. It represents that the sperm factor generates production of inositol trisphosphate ($IP_3$). Recently a sperm specific form of phospholipase C zeta, referred to as PLCZ was identified. In this paper, we confer the evidence that PLCZ represent the sperm factor that induces $[Ca^{2+}]_i$ oscillation and egg activation and discuss the correlation of PLCZ and infertility.

Fertilization and the oocyte-to-embryo transition in C. elegans

  • Marcello, Matthew R.;Singson, Andrew
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.389-399
    • /
    • 2010
  • Fertilization is a complex process comprised of numerous steps. During fertilization, two highly specialized and differentiated cells (sperm and egg) fuse and subsequently trigger the development of an embryo from a quiescent, arrested oocyte. Molecular interactions between the sperm and egg are necessary for regulating the developmental potential of an oocyte, and precise coordination and regulation of gene expression and protein function are critical for proper embryonic development. The nematode Caenorhabditis elegans has emerged as a valuable model system for identifying genes involved in fertilization and the oocyte-to-embryo transition as well as for understanding the molecular mechanisms that govern these processes. In this review, we will address current knowledge of the molecular underpinnings of gamete interactions during fertilization and the oocyte-to-embryo transition in C. elegans. We will also compare our knowledge of these processes in C. elegans to what is known about similar processes in mammalian, specifically mouse, model systems.

Development and Validation of Predictive Model for Salmonella Growth in Unpasteurized Liquid Eggs

  • Kim, Young-Jo;Moon, Hye-Jin;Lee, Soo-Kyoung;Song, Bo-Ra;Lim, Jong-Soo;Heo, Eun-Jeong;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.442-450
    • /
    • 2018
  • Liquid egg products can be contaminated with Salmonella spp. during processing. A predictive model for the growth of Salmonella spp. in unpasteurized liquid eggs was developed and validated. Liquid whole egg, liquid yolk, and liquid egg white samples were prepared and inoculated with Salmonella mixture (approximately 3 Log CFU/mL) containing five serovars (S. Bareilly, S. Richmond, S. Typhimurium monophasic, S. Enteritidis, and S. Gallinarum). Salmonella growth data at isothermal temperatures (5, 10, 15, 20, 25, 30, 35, and $40^{\circ}C$) was collected by 960 h. The population of Salmonella in liquid whole egg and egg yolk increased at above $10^{\circ}C$, while Salmonella in egg white did not proliferate at all temperature. These results demonstrate that there is a difference in the growth of Salmonella depending on the types of liquid eggs (egg yolk, egg white, liquid whole egg) and storage temperature. To fit the growth data of Salmonella in liquid whole egg and egg yolk, Baranyi model was used as the primary model and the maximum growth rate and lag phase duration for each temperature were determined. A secondary model was developed with maximum growth rate as a function of temperature. The model performance measures, bias factor ($B_f$, 0.96-0.99) and $r^2$ (0.96-0.99) indicated good fit for both primary and secondary models. In conclusion, it is thought that the growth model can be used usefully to predict Salmonella spp. growth in various types of unpasteurized liquid eggs when those are exposed to various temperature and time conditions during the processing.

Effect of superdosing phytase on productive performance and egg quality in laying hens

  • Kim, Jong Hyuk;Pitargue, Franco Martinez;Jung, Hyunjung;Han, Gi Ppeum;Choi, Hyeon Seok;Kil, Dong Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.994-998
    • /
    • 2017
  • Objective: An experiment was conducted to determine the effect of superdosing phytase on productive performance and egg quality in laying hens. Methods: A total of 200 42-wk-old Hy-Line Brown laying hens were allotted into 1 of 5 dietary treatments with 5 replicates consisting of 8 hens per replicate. The positive control (PC) and negative control diets (NC) were prepared based on the recommended P levels in layer diets. Supplemental phytase was added to the negative control diet at 10,000 (SD10), 20,000 (SD20), or 30,000 (SD30) fytase units (FTU)/kg. Productive performance was summarized for 6 weeks from 42 weeks to 47 weeks of age. Egg quality was assessed from 4 eggs per replicate randomly collected at the conclusion of the experiment. Results: The SD20 treatment had greater (p<0.05) hen-day egg production than PC, NC, and SD10 treatment groups. There was no difference in hen-day egg production between SD20 and SD30 treatment groups. However, SD30 treatment had greater (p<0.05) hen-day egg production than PC treatment, but showed no difference in hen-day egg production as compared to NC and SD10 treatment groups. However, egg weight, egg mass, feed intake, and feed conversion ratio were not affected by dietary treatments. Egg quality including eggshell strength, eggshell color, egg yolk color, and haugh unit was not influenced by dietary treatments. Conclusion: Superdosing level of 20,000 FTU/kg phytase in diets has a positive effect on egg production rate, but no beneficial effect on egg quality in laying hens.