• 제목/요약/키워드: Effluent rate

검색결과 551건 처리시간 0.025초

2단 생물막여과 탈질시스템에서 지하수의 질산성질소 및 입자제거특성 (Removal of Nitrate and Particulate from Groundwater with Two stage Biofilter system)

  • 이무재;박상민;전항배;김공수;임정수
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.669-675
    • /
    • 2005
  • Biological nitrate removal from groundwater was investigated in the biofilters packed with both gravel/sand and plastic media. Removal of particles and turbidity were also investigated in the 2-stage biofilter system consisted of biofilter and subsequent sand filter. In the single biofilter packed with gravel and sand, nitrate removal efficiency was dropped with the increase of filtration velocity and furthermore, nitrite concentration increased up to 3.2 mg-N/L at 60 m/day. Denitrification rate at the bottom layer below 25 cm was faster 8 times than upper layer in the up-flow biofilter. Nitrite build-up, due to the deficiency of organic electron donors, occurred at the upper layer of bed. Besides DO concentration and organic carbon, contact time in media was the main factor for nitrate removal in a biofilter. The most of the effluent particles from biofilter was in the range from 0.5 to $2.0{\mu}m$, which resulted in high turbidity of 1.8 NTU. However, sand filter followed by biofilter efficiently performed the removal of particles and turbidity, which could reduce the turbidity of final filtrate below 0.5 NTU. Influent nitrate was removed completely in the 2-stage biofilter and no nitrite was detected.

하수고도처리에서 층상이중수화물을 이용한 인산 이온교환 특성 (Characteristics of Ion Exchange of Phosphate using Layered Double Hydroxides in Advanced Wastewater Treatment)

  • 송지현;신승규;이상협;박기영
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.991-995
    • /
    • 2006
  • The layered double hydroxide with the insertion of chloride ions (LDH-Cl), which was synthesized by the co-precipitation method, was applied to investigate the fundamental aspects of the absorptive agent for phosphate removal from wastewater. The adsorption capacity was best described by the Langmuir-FreundIich isotherm, and the estimated isotherm parameters indicate that the LDH-CI capacity for the phosphate removal is much higher than that observed using a natural adsorbent material such iron oxide tailing. The kinetic experiment also showed that the LDH-Cl adsorption reaction rapidly at the adsorptive rate of 0.55 mg-P/g-LDH/min, implying that this adsorbent can be of use in the full-scale applications. The pH had a minimal effect on the LDH adsorption capacity in the range of 5 to 11, although the capacity dropped at the low pHs because of the change in LDH surface properties. Furthermore, other anions such as $Cl^-$ and $NO_3{^-}$ commonly found in the wastewater streams insignificantly affected the phosphate removal efficiencies, while $HCO_3{^-}$ ions had a negative effect on the LDH adsorption capacity due to its high selectivity. The phosphate removal experiment using the actual secondary effluent from a wastewater treatment plant showed the similar decrease in adsorption capacity, indicating that the bicarbonate ions in the wastewater were competing with phosphate for the adsorptive site in the surface of the LDH-Cl. Overall, the synthetic adsorbent material, LDH-Cl, can be a feasible alternative over other conventional chemical agents, since the LDH-Cl exhibits the high phosphate removal capacity with the low sensitivity to other environmental conditions.

석탄폐석의 흡착능 및 흡착제로의 활용방안에 관한 기초 연구 (Fundamental Study on Adsorption Capacity and Utilization of Coal Waste as Adsorbents)

  • 한동준;임재명;이찬기;이해승
    • 한국토양환경학회지
    • /
    • 제2권2호
    • /
    • pp.61-72
    • /
    • 1997
  • 본 연구에서는 산과 계곡에 폐기물로 방치되어 있는 석탄폐석의 재활용 및 자원화의 측면에서 수처리에 이용될 수 있는 흡착제의 개발을 위한 기초실험이 수행되었다. 석탄폐석으로는 굴진폐석과 선탄폐석이 이용되었으며, 석탄폐석 자체가 지니고 있는 흡착능 실험과 열처리로 인한 흡착능 개선 여부를 검토하였다. 처리 대상물질은 중금속, 색도, 그리고 COD등을 선정하였다. 실험조건은 회분식과 컬럼식으로 구분하여 각각 이루어졌으며, 실험결과 다음과 같은 결론을 얻을 수 있었다. 1) 천연상태의 석탄폐석은 약 20~30%의 중금속 흡착능을 지니고 있는 것으로 나타났으며, 탄화 공정인 간단한 열처리만으로도 약 2~5배의 흡착능 향상이 이루어졌다. 2)석탄폐석의 열처리 조건 변화에 따른 중금속 흡착능을 비교한 결과, 50$0^{\circ}C$에서 6시간 반응시킨 것이 가장 우수하였다. 3)칼럼실험에 있어 기존의 입상활성탄 보다 처리효율이 저조하나 석탄폐석은 무가공 상태로도 약 20~60%의 COD 및 색도를 제거할 수 있었다. 4) $500^{\circ}C$, 에서 6시간 열처리된 폐석의 컬럼실험에서 생물학적 유출수의 색도 제거에 우수함을 알 수 있었으며, 중금속 및 COD제거에 있어서는 여과 속도에 따라 많은 차이를 보였다. 따라서 석탄폐석을 흡착제로의 활용이 가능할 것으로 판단되며, 본 연구 이외에 활성화 공정을 적용할 경우 흡착정도는 더 향상 될 것으로 판단된다.

  • PDF

SWRO-PRO 복합해수담수화 신공정기술의 연구 (The study of a novel SWRO-PRO hybrid desalination technology)

  • 김지숙;여인호;이원일;박태신;박용균
    • 상하수도학회지
    • /
    • 제32권4호
    • /
    • pp.317-324
    • /
    • 2018
  • SWRO-PRO hybrid desalination technology is recently getting more attention especially in large desalination markets such as USA, Middle East, Japan, Singapore, etc. because of its promising potential to recover a considerable amount of osmotic energy from brine (a high-concentration solution of salt, 60,000 - 80,000 mg/L) and also to minimize the impact of the discharged brine into a marine ecosystem. By the research and development of the core technologies of the SWRO-PRO desalination system in a national desalination research project (Global MVP) supported by Ministry of Land, Infrastructure, and Transport (MOLIT) and Korea Agency for Infrastructure Technology Advancement (KAIA), it is anticipated that around 25% of total energy consumption rate (generally 3 to $4kWh/m^3$) of the SWRO desalination can be reduced by recovering the brine's osmotic energy utilizing wastewater treatment effluent as a PRO feed solution and an isobaric pressure exchanger (PX, ERI) as a PRO energy converter. However, there are still several challenges needed to be overcome in order to ultimately commercialize the novel SWRO-PRO process. They include system optimization and integration, development of efficient PRO membrane and module, development of PRO membrane fouling control technology, development of design and operation technology for the system scaling-up, development of diverse business models, and so on. In this paper, the current status and progress of the pilot study of the newly developed SWRO-PRO hybrid desalination technology is discussed.

담배추출물의 알카로이드감소에 미치는 산화제의 영향 (The Effect of Oxidizing Agents on Alkaloid Reduction of Tobacco Extract)

  • 황건중
    • 한국환경보건학회지
    • /
    • 제8권2호
    • /
    • pp.33-46
    • /
    • 1982
  • This experiment was carried out for the purpose of reducing alkaloid in reconstituted tobacco sheet and effluent of reconstituted tobacco sheet manufacturing company by treating oxidizing agents such as ozone, sodium hypochlorite, perchloric acid and hydrogen peroxide to tobacco extract created from the manufacturing process of reconstituted tobacco sheet. The effect of alkaloid reduction in tobacco extract by the volume added, time of treatment and pH of oxidizing agents were as follows: 1. When the solid rate of tobacco extract stood at 10 percent, the content of alkaloid, total sugar, total nitrogen and chlorine was 1,600mg/l, 11,000mg/l, 3,200mg/l and 4,000mg/l, respectively. 2. The effect of alkaloid reduction through ozone treatment was in proportion to time of ozone treatment. Alkaloid showed a 31.2 percent reduction under 8 hours' ozone treatment and 0.23g ozone consumed to remove lmg alkaloid. 3. Alkaloid reduction through sodium hypochlorite treatment was influenced by quantity of chlorine in sodium hypochlorite solution. To remove lmg alkaloid, 36.3mg chlorine was used. Reduction of alkaloid was not affected by time of sodium hypochlorite treatment, while showed the best reaction under pH 5-7. 4. The effect of alkaloid reduction by perchloric acid was under the control of the volume added and time of treatment of perchloric acid. The volume of perchloric acid required to remove alkaloid was on the decrease as time of treatment was getting longer. lmg alkaloid was removed by 0.15g perchloric acid under 8 hours' perchloric acid treatment. 5. Alkaloid reduction reacted slowly to the volume added and time of treatment of hydrogen peroxide. Under 8 hours' hydrogen peroxide treatment, it showed maximum removal, registering 10 percent alkaloid reduction.

  • PDF

막결합 연속회분식 반응기를 이용한 농촌마을 하수의 고도처리 (Membrane-Coupled Sequencing Batch Reactor System for the Advanced Treatment of Rural Village Sewage)

  • 김승건;이호원
    • 멤브레인
    • /
    • 제24권1호
    • /
    • pp.20-30
    • /
    • 2014
  • C/N 비가 낮은 농촌마을 하수의 고도처리를 위하여 $0.4{\mu}m$의 세공크기를 갖고 있는 평막이 침지된 연속회분식 반응기를 사용하였다. 분말활성탄의 투입, 폭기량 및 유입 유기물 농도가 처리효율과 여과 성능에 미치는 영향을 조사하였다. 54일 이내의 조업 초기에서는 C/N 비가 증가할수록 COD, T-N 및 T-P의 제거율과 MLSS 농도는 증가하였다. 조업 89일 후의 COD, T-N 및 T-P의 제거율은 각각 97.1%, 75.0% 및 48.3%이었다. 막여과에 의해 처리수에서 SS는 검출되지 않았으며, T-P의 제거율이 낮게 나온 이유는 과잉의 슬러지를 배출하지 않았기 때문이다. 분말활성탄을 투여한 경우 조업이 진행됨에 따라 분말활성탄의 혼합강도와 충돌빈도가 증가하여 슬러지의 입자크기가 감소하였으며, 이로 인해 분말활성탄을 투여하지 않은 경우에 비해 TMP 상승이 크게 나타났다.

토양/대수층 처리(soil aquifer treatment)에서 유기물과 질소화합물 제거와 이송 모델링-(I) 모델 개발 및 검증 (Modeling Fate and Transport of Organic and Nitrogen Species in Soil Aquifer Treatment-(I) Model Development and Verification)

  • 김정우;김정곤;차우석;최희철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권3호
    • /
    • pp.9-15
    • /
    • 2005
  • 토양/대수층 처리(Soil Aquifer Treatment, SAT)는 하수처리장으로부터의 2차 또는 3차 처리수를 대수층으로 침투시켜, 토양 매질에서 일어나는 물리적/생화학적 반응에 의해 재처리하는 용수 재이용 기술이다. SAT에서의 주요 관심 대상은 유기물과 질소화합물의 제거와 이송에 있다. 본 연구에서는 암모늄의 질산화 반응, 질소산회물의 탈질 반응, 그리고 유기물의 산화반응을 고려하여 SAT에서 일어나는 반응 메커니즘을 규명하고 이를 지하수 흐름과 이송 모렐 에 접목시킴으로써 SAT 모델링 시스템을 구현하고자 하였다. 실험실 일차원 불포화 토양 컬럼 실험을 통한 모델 검증에서 암모늄, 질산성 질소, DOC, 용존산소 모두 일정한 농도 범위 안에서 일치하였다. 모델 변수에 대한 민감도 분석에서, 암모늄 분배계수는 유출부의 암모늄 농도에, 용존산소 저해상수는 유출부의 유기물 농도에, 그리고 미생물 감쇄계수는 유출부의 용존산소 농도에 영향을 주었다.

고농도 질산성질소와 Ca+2을 함유한 산세폐수의 효과적인 처리를 위한 SBR 공정의 적용 (Application of SBR Process to Treat Pickling Wastewater including the High Nitrate and Ca+2)

  • 김승준;최용수;배우근
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.215-221
    • /
    • 2006
  • This research presents results from laboratory and pilot-scale experiments to remove high-nitrate in pickling wastewater using the sequencing batch reactor (SBR) as a biological method. During the experimental periods, the influent concentrations of NOx-N and $Ca^{+2}$ were analyzed to be 350-1,600 and 700-800 mg/L, respectively. In order to provide carbon source for denitrification, methanol has been added in proportion to the influent nitrate loading. The mean concentrations of MLSS and MLVSS, the fraction of volatile solids in sludge and the sludge volume index were measured to be 27 g/L, 5 g/L, 18.5% and 7.5, respectively. The solid retention time was kept in the range of 18 to 22 days, specific denitrification rate ($U_{dn}$) was $0.301g{NO_3}^--N/gVSS/day$. The oxidized nitrogen concentration of effluent ranged 2-34 mg/L with an average of 5.2 mg/L, the overall reduction in total nitrogen was more than 99.2%. In order to treat the pickling wastewater including the high concentration of nitrate and $Ca^{+2}$, the continuous flow process is not suitable because the specific gravity of the sludge is considerably increased by $Ca^{+2}$, thus the SBR process is shown to be very effective to treat the pickling wastewater.

양돈폐수로부터의 수소 생성 특성 (Characteristics of H2 Production from Swine wastewater)

  • 장영복;정태영;차기철;정형근;김성헌;김동진;유익근
    • 한국물환경학회지
    • /
    • 제20권4호
    • /
    • pp.339-345
    • /
    • 2004
  • The characteristics of $H_2$ production from livestock wastewater were investigated through an anaerobic acid forming process using Clostridium beijerinckii and the photosynthetic process using Rhodobacter sphaeroides. The submerged separation membrane was installed in the acid forming reactor, The photosynthetic process is composed of two reactors(photosynthetic reactor 1 and photosynthetic reactor 2) which is connected continually. The removal rate of COD and the production of volatile fatty acid(VFA) in the acid forming process were approximately 50% and 1000mg/L, respectively. The 70% of COD in the effluent of acid forming process was removed through the photosynthetic process. The production of $H_2$ in the photosynthetic reactor 1 and 2 was 50 and $25mLH_2/gVFA_{COD}$, respectively. The values of Y in acid forming reactor, photosynthetic reactor 1 and 2 was 0.2263, 0.0601 and 0.0393, respectively. The acetic acid and butyric acid produced in acid forming process were converted to $H_2$ by photosynthetic bacteria.

중압 자외선과 과산화수소 공정을 이용한 하수 3차 처리수중 총유기탄소와 미량오염물질 제거 (Removal of Total Organic Carbon and Micropollutants in Tertiary Treated Sewage by Medium Pressure UV/H2O2)

  • 이재엽;김일호
    • 한국물환경학회지
    • /
    • 제36권4호
    • /
    • pp.314-321
    • /
    • 2020
  • This study evaluated the applicability of UV-AOP process using medium-pressure UV lamp and H2O2 to remove TOC and emerging micropollutants in the effluent from a sewage treatment plant. The UV lamp with higher output(1.6~8.0 kW) showed slightly higher amount of power in removing TOC of 1 mg/L(0.09 kWh/mg/L~0.11 kWh/mg/L), however it was found that there was no significant difference for each cases. In addition, under the condition that the H2O2 concentration is sufficient, as the power consumption of the UV lamp increases, the unit TOC removal concentration per unit H2O2 decomposition concentration also increases, resulting in effective removal of TOC. The removal rate of 7 new trace contaminants, such as antibiotics by the UV-AOP tested, was at least 89.4%, and the ability to remove the emerging micro pollutants in the process was very effective. But, it was judged that it could not be excluded that the probablity of transforming to oxidated by-product in the case of a low TOC removal efficiency. Depending on the operating conditions of the UV and H2O2 processes, a higher BOD concentration is found in the treated water than in the influent, and it is necessary to review the UV power and proper injection conditions of H2O2 to maintain the BOD concentration increase below a certain level.