• 제목/요약/키워드: Effluent rate

검색결과 551건 처리시간 0.025초

대체 외부탄소원으로서의 TPA 생산부산물 특성 및 현장적용성 평가 (Assessment of Characteristics and Field Applicability with TPA By-Product as Alternative External Carbon Source)

  • 정인철;전성규;성낙창
    • 대한환경공학회지
    • /
    • 제28권5호
    • /
    • pp.480-486
    • /
    • 2006
  • B시 S하수처리장에서 화학침전 공정에서 MLE 공정으로 공법을 변경하였으며, 생물학적으로 탈질시 부족한 탄소원을 보충하기 위해 외부탄소원이 요구되었다. 본 연구에서는 약 4.7%의 아세트산을 포함하는 TPA(Terephthalic Acid) 생산부산물의 대체탄소원으로 적용 가능성을 평가하기 위해 NUR(Nitrate Uptake Rate) 및 OUR(Oxygen Uptake Rate) 실험과 현장 적용실험을 수행하였다. 실험 결과 TPA 생산 부산물은 일반 상용 외부탄소원으로 널리 쓰이는 메탄올보다 빠른 순응특성을 나타내었고 비탈질율이 $8.24mg{NO_3}^--N/gVSS/hr$, 단위 질산성 질소 제거당 COD 소모비는 $3.70COD_{Cr}/g\;NO_3$, RBDCOD 함량 99.4%로 나타났다. S하수처리장에 대한 TPA 생산부산물 현장 적용 실험을 통해 안정적인 영양염류 제거효율을 나타내었으며 방류수 T-N 농도가 8.2 mg/L로 생물학적 탈질에 요구되는 탄소원을 보충할 수 있는 대체탄소원으로 적합하다고 판단되었다.

SBR을 이용한 하수와 우사폐수로 구성된 혼합폐수의 영양소 제거 (The Nutrient Removal of Mixed Wastewater composed of Sewage and Stable Wastewater using SBR)

  • 김홍태
    • 한국환경과학회지
    • /
    • 제8권5호
    • /
    • pp.617-623
    • /
    • 1999
  • This study was carried out to obtain the optimal operating parameter on organic matters and nutrient removal of mixed wastewater which was composed of sewage and stable wastewater using SBR. A laboratory scale SBR was operated with An/Ae(Anaerobic/Aerobic) ratio of 3/3, 2/4 and 4/2(3.5/2.5) at organic loading rate of 0.14 to 0.27 kgBOD/$m^3$/d. TCOD/SCOD ratio of mixed wastewater was 3, so the important operating factor depended upon the resolving the particulate parts of wastewater. Conclusions of this study were as follows: 1) For mixed wastewater, BOD and COD removal efficiencies were 93-96% and 85-89%, respectively. It was not related to each organic loading rate, whereas depended on An/Ae ratio. During Anarobic period, the amount of SCOD consumption was very little, because ICOD in influent was converted to SCOD by hydrolysis of insoluble matter. 2) T-N removal efficiencies of mixed wastewater were 55-62% for Exp. 1, 66-76% for Exp. 2, and 67-81% for Exp. 3, respectively. It was found that nitrification rate was increased according to organic concentration in influent increased. Therefore, the nitrification rate seemed to be achieved by heterotrophs. During anoxic period, denitrification rate depended on SCOD concentration in aerobic period and thus, was not resulted by endogenous denitrification. However, the amount of denitrification during anaerobic period were 3.5-14.1 mg/cycle, and that of BOD consumed were 10-40 mg/cycle. 3) For P removal of mixed wastewater, EBPR appeared only Mode 3($3^*$). It was found that the time in which ICOD was converted to VFA should be sufficient. For mode 3 in each Exp., P removal efficiencies were 74, 87, and 81%, respectively. But for 45-48 of COD/TP ratio in influent, P concentration in effluent was over 1 mg/L. It was caused to a large amount of ICOD in influent. However, as P concnetration in influent was increased, the amounts of P release and uptake were increased linearly.

  • PDF

상하수처리를 위한 새로운 고효율 응집/여과 장치 (A Novel High Rate Flocculator/Filter in Water and Wastewater Treatment)

  • ;;권대영
    • 상하수도학회지
    • /
    • 제19권2호
    • /
    • pp.149-154
    • /
    • 2005
  • Conventionally used flocculation tanks require large space and high energy requirement for mixing. Static flocculators using gravel bed filter operate at a lower flow rate ($5-10m^3/m^2{\cdot}h$). Further, the cleaning of this system is difficult. A novel high rate static flocculator/filter developed at UTS packed with buoyant media such as polystyrene, polypropylene has been found to operate at higher filtration rates (30-45 $5-10m^3/m^2{\cdot}h$). They can easily be cleaned with minimal energy. Detailed experiments conducted with an artificial kaolin clay solution show that buoyant media is an excellent static flocculator in producing uniform filterable microflocs (12-15 m) even when it is operated at a high rate of 30-40 m/h. Detailed filtration experiments were conducted in a wastewater treatment plant to treat the biologically treated effluent with a floating media of depth of 120 cm. This filter was able to remove majority of phosphorus and remaining solids. It reduced significantly the fecal coliforms and fecal streptoccoci, thus requiring less amount of chlorine for disinfection. The advantage of this system is the low energy and water requirement for cleaning of filter bed. The periodic backwash adopted 30 seconds air and water and 30 seconds water cleaning every 90 minutes filter operation. Thisis equivalent to 1-2% of filtered water production. Mechanical cleaning system on the other hand, requires very low energy requirement (<1% of filtered water production).

하수처리시설의 에너지자립화 및 경제적 효과분석 (Study on Energy Independence Plan and Economic Effects for Sewage Treatment Plant)

  • 박기학;이호식;하준수;김극태;임채승
    • 한국물환경학회지
    • /
    • 제37권2호
    • /
    • pp.128-136
    • /
    • 2021
  • It is generally known that a wastewater treatment plant (WWTP) consumes immense energy even if it can produce energy. With an aim to increase the energy independence rate of WWTP from 3.5% in 2010 to 50% in 2030, the Korean government has invested enormous research funds. In this study, cost-effective operating alternatives were investigated by analyzing the energy efficiency and economic feasibility for biogas and power generation using new and renewable energy. Based on the US EPA Energy Conservation Measures and Korea ESCO projects, energy production and independence rate were also analyzed. The main energy consumption equipment in WWTP is the blower for aeration, discharge pump for effluent, and pump for influent. Considering the processes of WWTP, the specific energy consumption rate of the process using media and MBR was the lowest (0.549 kWh/㎥) and the highest (1.427 kWh/㎥), respectively. Energy-saving by enhancing anaerobic digester efficiency was turned out to be efficient when in conjunction with stable wastewater treatment. The result of economic analysis (B/C ratio) was 2.5 for digestive gas power generation, 0.86 for small hydropower, 0.49 for solar energy, and 0.15 for wind energy, respectively. Furthermore, it was observed that the energy independence rate could be enhanced by installing energy production facilities such as solar and small hydropower and reducing energy consumption via the replacement of high-efficiency operating.

만경강 본류 중 오염우심지역의 TP 저감방안 연구 (A Study on the Reduction of Total Phosphate of the Concerned Pollution Area in the Main Stream of Mangyeong River)

  • 최정화;권재옥;이미선;장욱;최근화;고은혜;심서현;조창우
    • 한국물환경학회지
    • /
    • 제38권6호
    • /
    • pp.316-326
    • /
    • 2022
  • This study aimed to investigate the causes of the increasing Total Phosphate(TP) in the mainstream of Mangyeong river over the past 10 years, and suggested a reduction plan of about 3 points. First, the high TP concentration was continuously released in the discharge outlet of the Haepo bridge stormwater pipeline. The average TP concentration was 5.066 mg/L and values as high as 29.470 mg/L were measured. The highest pollution contribution rate to the Mangyeong river was more than 70 %. The cause of the pollution was expected to take place somewhere in Wanju Industrial Complex. Second, the average TP concentration of wastewater-treated effluent in the H factory was 0.405 mg/L. If a TP reduction facility is additionally installed in the H factory, it will help reduce TP uptake by Lake Saemangeum. Third, the TP concentration of untreated non-point source point flowing into the Samrae stream was very high with an average of 2.828 mg/L. Also, the pollution contribution rate of Samraecheon 2 to Mangyeong river was 21.8 % on average and up to 58 %. The pollution contribution rate was also high during the agricultural season and the winter, during which the flow rate is decreased. Investigation of these three points may be continuously needed, and analysis results and policy proposals presented to Jeollabukdo and Wanjugun to manage pollution sources.

수자원 확보를 위한 URC공법의 적용 I: 유기물, 중금속, 영양염의 제거특성에 관한 연구 (Application of Ultra Rapid Coagulation for Securing Water Resource II: Study of organic, metals, and nutrients removal)

  • 박세진;윤태일;김재형;조경철
    • 청정기술
    • /
    • 제6권1호
    • /
    • pp.27-38
    • /
    • 2000
  • 초고속응집침전공정(URC)은 가중응집제(WCA)를 첨가하고 슬러지를 반송시켜 응결핵으로서의 역할을 수행시킴으로서 floc의 성장속도를 향상시키고, 입자표면의 흡착을 활성화하여 유기물, 중금속, 인 등 수중에 존재하는 오염물을 보다 효율적으로 제거하며, 기존의 응집 공정에 비하여 침전성을 향상시킬 수 있다. 현재까지 하수처리장과 하천, 호소에서 수행된 URC pilot-test와 Jar-test의 결과를 비교 검토하여 가중 응집제와 반송 슬러지에 대한 오염물 제거특성에 대한 연구가 수행되었으며, 수자원의 재이용을 위한 가능성을 평가하였다.

  • PDF

유해화학물질의 생태계 모델링 - I. 동경만 Nonylphenol의 환경동태 해석 - (Ecological modeling for toxic substances - I . Numerical simulation of transport and fate of Nonylphenol in Tokyo Bay-)

  • 김동명
    • 한국환경과학회지
    • /
    • 제14권9호
    • /
    • pp.827-835
    • /
    • 2005
  • A three-dimensional ecological model (EMT -3D) was applied to Nonylphenol in Tokyo Bay. EMT -3D was calibrated with data obtained in the study area. The simulated results of dissolved Nonylphenol were in good agreement with the observed values, with a correlation coefficient(R) of 0.7707 and a coefficient of determination (R2) of 0.5940. The results of sensitivity analysis showed that biodegradation rate and bioconcentration factor are most important factors for dissolved Nonylphenol and Nonylphenol in phytoplankton, respectively. In the case of Nonylphenol in particulate organic carbon, biodegradation rate and partition coefficient were important factors. Therefore, the parameters must be carefully considered in the modeling. The mass balance results showed that standing stocks of Nonylphenol in water, in particulate organic carbon and in phytoplankton are $8.60\times 10^5\;g,\;2.19\times 10^2\;g\;and\;3.78\times 10^0\;g$ respectively. With respect to the flux of dissolved Nonylphenol, biodegradation in the water column, effluent to the open sea and partition to particulate organic carbon were $6.02\times10^3\;g/day,\;6.02\times10^2\;g/day\;and\;1.02\times10^1\;g/day$, respectively.

유가공 폐수의 활성슬러지 처리에서 벌킹 제어용 염소가 미생물의 유기물 분해 활성에 미치는 영향 (Effect of Chlorination for Bulking Control on the Organic Removal Activity of Activated Sludge Treating Dairy Wastewater)

  • 남세용;최진택
    • 한국환경보건학회지
    • /
    • 제32권1호
    • /
    • pp.96-101
    • /
    • 2006
  • Chlorination inhibition on the organic removal activity of activated sludge microorganism was investigated in this study. It is well known that chlorination improves the settleability of filamentous bulking sludge through the selective impediment of filamentous microorganisms. However, it is based on the declination of effluent water quality after actual chlorination in dairy wastewater treatment plant. In case of the activated sludge which was exposed in the suggested concentration of chlorine $7.5\;mgCl_2/gVSS/day$ for the filamentous bulking control, decrease of organic uptake rate of $4.9\~24.0\%$, and dentrification rate of $24.8\~30.3\%$ ware shown in comparison to the control group which was not reacted with chlorine. As a result of comparing floc size of activated sludge microorganism, the average of floc diameter in the chlorine exposed group was $150\;{\mu}m$, which displays $25\%$ decrease compared with the control group.

회전생물활성탄[RBAC] 공정을 이용한 질소.인의 동시 제거 (Simultaneous Removal of Nitrogen and Phosphorus by Rotating Biological Activated Carbon Process)

  • 남범식;이영호;조무환
    • KSBB Journal
    • /
    • 제14권5호
    • /
    • pp.606-610
    • /
    • 1999
  • 본 연구는 회전생물활성탄 공정을 이용하여 부하를 증가시켜가면서 질소, 인 제거율을 조사하여 이들의 동시제거 가능성을 검토하였다. 암모니아성 질소 제거효율은 96.5% 이상으로 나타났으며 유출수의 암모니아성 질소, 아질산성 질소, 질산성 질소의 농도는 비교적 안정적으로 유지되었다. 총질소 제거율은 RUN 1을 제외하고는 90% 이상을 유지하였다. 총인은 32.7~49.8%의 제거율을 나타내었고 부하의 증가에 따라 부착미생물의 양은 269~473 mg/g support의 범위를 나타내었다.

  • PDF

소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발 (Development of Up- and Down-flow Constructed Wetland for Advanced Wastewater Treatment in Rural Communities)

  • 김형중;윤춘경;권태영;정광욱
    • 한국농공학회논문집
    • /
    • 제48권6호
    • /
    • pp.113-124
    • /
    • 2006
  • The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.