• Title/Summary/Keyword: Effluent rate

Search Result 553, Processing Time 0.029 seconds

Protozoa Structure of Anaerobic/Anoxic/Oxic Process. (혐기/무산소/호기공법의 원생동물 군집구조)

  • 이찬형;문경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.264-270
    • /
    • 2003
  • A quantitative survey of the protozoa microfauna at bioreactor of advanced sewage treatment plant was carried out during a period of 11 months. In this study, 32 genera were identified, including 17 ciliates. The abundance of the important protozoa were compared with the operating parameters and water quality of the effluent of the plant using statistical procedure. Statistical analysis revealed a relationship between the abundance of some genera and removal rate. In particular, correlation analysis on the quality of effluent and protozoa indicated that Lepadella may be used as the bioindicator of TP removal and Trochilia, Entosiphon, Colepus may be used as the bioindicator of TN removal when water temperature was below $20^{\circ}C$.

Methane production by high temperature anaerobic digestion of food wastes

  • Song, Hyo-Jeong;Seo, Jin-Ho;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.266-269
    • /
    • 2005
  • This study targeted methane production and decrease of organic materials concentration by high temperature anaerobic digestion of food waste. A anaerobic reactor with circulation was employed and the operation condition as follows: high temperature of $45{\pm}2,$ 0.6 $kg-VS/m^3/d,$ HRT of 70 days, pH of $6.8{\sim}7.2$. The CODcr removal rate of $75%{\sim}85%$ with effluent of $14,000{\sim}19,000$ mg/L in case of influent of $75,000{\sim}95,000$ mg/L showed. In influent TS(Total Solid) and VS(Volatile Solid) concentration of $2.94%{\sim}5.09%,$ and $2.98{\sim}5.01%,$ the effluent concentration was $0.65{\sim}1.1%$ and $0.6%{\sim}0.8%,$ respectively. 0.28 $m^3-CH_4$ / kg-VS was averagely obtained in the system.

  • PDF

A Study on Removal Efficiency and Applicability of Natural Type Road Non-point Pollutant Reduction Facilities (자연형 도로 비점오염저감시설의 저감효율 및 적용성 연구)

  • Lee, Sang Hyuk;Cho, Hye Jin;Kim, Lee Hyung
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2014
  • PURPOSES : The purpose of this study is to assess removal efficiency of non-point pollutants and applicability for non-point pollutant reduction facilities by conducting the demonstration project operation. METHODS : In order to analyze removal efficiency of non-point pollutants for facilities such as a grassed swale, a small constructed wetland, a free water surface wetland, a horizontal sub-surface flow wetland, and a sand filtration, the field data including specifications of facilities, rainfall, inflow and runoff rainfall effluent etc. was acquired after occurring rainfall events, and the acquired data was analyzed for removal efficiency rate to assess road non-point pollutants facilities using event mean concentration (EMC) and summation of load (SOL) methods. RESULTS : The results of analyzing rainfall effluent, non-point pollutant sources showed that total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), chrome (Cr), zinc (Zn), and lead (Pb) can be removed through non-point pollutant reduction facilities by 60.3% ~ 100%. Especially removal efficiency of TSS, COD and BOD is relatively higher than removal efficiency of other non-point pollutant sources in all kind of non-point pollutant facilities. CONCLUSIONS : Based on the result of this study, even though natural type of non-point pollutant reduction facilities for roads occupy small areas comparing with drainage basin areas, most of non-point pollutant sources would be removed through the facilities.

Performances of Ceramic-tube and Pall-ring Upflow Anaerobic Filters Treating a Dairy Waste (세라믹튜브 및 패킹형플라스틱 여재충전 상향류식 혐기성여상에 의한 유가공 폐수처리)

  • Hur, Joon-Moo;Chang, Duk;Pae, Hyung-Suk;Kim, Soo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • Laboratory experiments were conducted to investigate the performances of anaerobic filters packed with ceramic tube and pall-ring media treating a dairy waste. The media packing volume was 65% of effective volume of anaerobic filter. Organics removals of anaerobic filters were maintained above 80% even at an organics loading rate of $10kgCOD/m^3/d$, and this was comparable to aerobic treatment of organic wastes. Organics removals of the ceramic tube anaerobic filters were always lower than those of the pall-ring anaerobic filters due to intrinsic physical property of ceramic tube, especially lower void space which caused to clogging and entrapment of biogas, substrate transfer limitation, and irregular evolution of biogas leading to loss of solids and biomass. This was clearly observed in higher concentration of TSS in the effluent from the ceramic tube anaerobic filter despite of higher retention capacity of TSS compared with pall-ring media. Vertical distribution of organics and solids in the filters showed above 90% of organics and solids in influent were removed below 20% of reactor height, and 50% of remaining organics and solids were removed though media packing zone. Effluent quality from the anaerobic filter was heavily depended on media itself as well as suspended biomass formed below media. It is therefore concluded that the type of media played an important role in biomass accumulation arid gas-liquid-solid separation efficiency. Type of media did not affect the start-up behaviors of the anaerobic filter, and supernatant from anaerobic digested sludge showed a good performance as a seeding materials.

  • PDF

Removal of Toxicity from Kraft Pulp Mill Effluents by Activated Sludge Process (활성슬러지 공정에 의한 Kraft 펄프 폐수의 독성 제거)

  • Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.9-18
    • /
    • 1994
  • Activated sludge pilot plant testing was conducted to determine the ability of a well-designed activated sludge treatment system to remove chromic toxicity from the bleached kraft pulp mill effluent. Removals of conventional(BOD and SS) and nonconventional(resin and fatty acids, color, AOX) pollutants were estimated. The pilot plant was operated at steady state for about 10 weeks at an F/M of 0.28 and a sludge age of 8.4 days. The average MLSS concentration was 4,309mg/l, of which volatile fraction was 57%. During the operation period, the BOD removal reaction rate(k) was determined to be 8.2/day at $30^{\circ}C$. The BOD removal was 84 percent, which was 3 to 6 percent lower than expected for full-scale treatment. The chronic toxicity of the activated sludge effluent was tested by employing both Dinnel and the BML protocols. It was found that the pilot plant could achieve in excess of 90 percent reduction in chronic echinoderm toxicity. The data show slight reduction of color and AOX across the activated sludge system. The pilot system, however, demonstrated on excellent removal of resin and fatty acids.

  • PDF

Application of Anaerobic Sequencing Batch Reactor to Mesophilic Digestion of Municipal Sewage Sludge (중온 혐기성 연속회분식 공정에 의한 도시하수슬러지의 소화가능성 평가)

  • Hur, Joon-Moo;Chang, Duk;Chung, Tai-Hak;Son, Bo-Soon;Park, Jong-An
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.9-19
    • /
    • 1998
  • Laboratory experiments were carried out to investigate the performance of anaerobic sequencing batch reactor(ASBR) for digestion of a municipal sludge. Each cycle of the ASBR comprised feeding, two-or three-day reaction, one-day thickening, and withdrawal. The reactors were operated at an HRT of 10days and 5days with an equivalent organic loading rate of 0.8-1.54 gVS/l/d, 1.81-3.56 gVS/l/d at 35$\circ$C, respectively. Solids accumulation was remarkable in the ASBR during start-up period, and directly affected by settleable solids in the feed sludge. Floatation thickening occured in the ASBRs, and Solids profiles at the end of thickening step dramatically changed at solid-liquid interface. Slight difference in solids concentrations was observed within thickened sludge bed. Efficiencies through floatation thickening were comparable to that of additional thickening of the completely mixed control reactor. Average solids concentrations in the ASBRs were 2.2-2.6 times higher than that in the control throughout the total operation period. The dehydrogenase activity had a strong correlation with the solids concentration. Organics removals based on clarified effluent of the ASBRs were consistently above 86%. Remarkable increase in equivalent gas production of 27-52% was observed at the ASBRs compared with the control though the control and ASBRs showed similiar effluent quality. Thus, digestion of a municipal sludge was possible using the ASBR in spite of high concentration of solids in the sludge.

  • PDF

침지형 분리막을 사용한 오수처리

  • 최광호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.113-133
    • /
    • 1998
  • In activated sludge process, sludge settling condition is affected by organic loading rate or operation condition, and if settling condition is getting worse, it is common that overall process fails due to wash-out of biomass causing low concentration in the aeration tank. Also activated sludge process has such several problems as requiring large area, consuming a lot of power and producing large volume of sludge. Increased public concern over health and the environment combined with a strong desire to reduce capital, operating and maintenance costs, have created a need for innovative technologies for building new high quality effluents which vail meet 21st century crkeria. MBR(Membrane Bioreactor) process consists of a biological reactor and ultrafiltration(UF) membrane system that replaces the conventional clarifier of an activated sludge process. The main operating advantages of this system are that the quality of the effluent is independent of the settleability of the mixed liquor and that the effluent is free of suspended solids in any operating condition. It is possible to eliminate clarifier and to reduce the volume of aeration tank because it can afford to accumulate high biomass concentration in the bioreactor(20, 000~30, 000mg/L), which would not be possible in a conventional activated sludge process. Therefore, this process reduces overall treatment plant area. In addition to those advantages, Longer SRT condition enables higher sludge digestion in MBR process so the sludge volume produced is 50 to 70% lower than that of conventional activated sludge process There are two kinds of MBR process according to the allocations of membrane. One is cross flow type MBR of which module is located outside of the bioreactor and mixed liquor is driven into the membrane module. The other is submerged type MBR process of which module is submerged in the bioreactor and mixed liquor is generally sucked from the lumen side. addition to that the cake layer is often removed by the uplifting flow of bubbling air. A submerged MBR process is superior to a crossflow MBR in regard to the power consumption because suction pressure of a submerged MBR is generally lower than that of a crossflow MBR which has recirculation pump. A submerged MBR, therefore, has the potential to be applied to small wastewater treatment plants that need low cost treatment systems.

  • PDF

Degradation of MEA and Characteristics of Outlet Water According to Operation Condition in PEMFC (고분자 전해질 연료전지 구동 조건에 따른 MEA 열화 및 배출수 특성)

  • Hwang, Byungchan;Lee, Sehoon;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.478-482
    • /
    • 2017
  • Humidity control of proton exchange membrane fuel cell(PEMFC) is very important control condition during driving. In terms of water management, low humidification conditions are advantageous, and high humidification is advantageous in terms of drainage utilization and energy efficiency. In this study, the characteristics of outlet water in low humidification and high humidification process were studied in terms of utilization of discharged water. Since the impurities in the effluent are generated during the degradation of the membrane and the electrode assembly(MEA), degradation of the MEA under low humidification and high humidification conditions was also studied. The rate of radical generation was high at low humidification condition of the anode RH 0%, which showed that it was the main cause of the degradation of the polymer membrane. Analysis of effluent showed low concentration of fluoride ion concentration of about 20 ppb at high humidification (both electrodes RH 100%) and 0.6 V, which was enough to be used as the feed water for electrolysis. Very low concentration of platinum below 0.2 ppb was detected in the condensate discharged from the high humidification condition.

Removal of Organic and Nutrients in Fish Market Wastewater using Sequencing Batch Reactor (SBR) (SBR공정을 이용한 수산물 위판장 폐수에서 유기물 및 질소 제거)

  • Kim, Sung-Ju;Lee, Dae-Hee;Park, Hung-Suck
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • This research work aims at treating saline wastewater generated from a fish market using four Sequencing Batch Reactors (SBR) operated under different conditions. The effect of C/N ratio (3, 6) and salt concentration (0.5~2%) on organic and nitrogen removal was studied. The synthetic wastewater prepared with glucose ($C_6H_{12}O_6$) as the primary carbon source along with ammonium chloride ($NH_4Cl$) was used in the three reactors. The fill, anoxic, aeration, settle and draw conditions were 2 hr, 4 hr, 4 hr and 2 hr respectively. The fourth reactor was operated at different conditions to investigate the practical feasibility of SBR application to handle fish market wastewater generated in Ulsan city that had fluctuating loading characteristics. Though the unacclimated sludge was initially affected by the salt concentration, the acclimated sludge removed 95% of the organics irrespective of the NaCl concentration and C/N ratio. However, the removal of nitrogen was affected more by C/N ratio than the salt concentration. While handling fish market wastewater, though the organic and nitrogen loading rate were varying between $0.009{\sim}0.259gCOD_{OH}/gVSS/day$ and 0.005~0.034 gN/gVSS/day, the effluent concentrations were far less than the effluent standard of $120mgCOD_{OH}/L$ and 60 mgN/L respectively, except when loading rates were fluctuating and 4 times higher than the average.

Experimental study of Nutrient Removal by Endogeneous Nitrate Respiration (ENR) Mechanism in domestic wastewater (질산성질소의 내생탈질기작을 이용한 하수내 영양소 제거에 관한 실험적 연구)

  • Park, Myung-Gyun;Ahn, Won-Sik;Lee, Eui-Sin;Heo, Yong-Rok;Park, Chong-Bok
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.77-83
    • /
    • 2002
  • The purpose of this study is to develop the efficient nutrient removal process and to verify operation and design parameters in domestic sewage. Endogenous nitrate respiration (ENR) was used for denitrification of nitrate in return sludge without additional organic carbon source. ENR reactor before the anaerobic tank enable to reduce nitrate below 3 mg/L and increase phosphate release at anaerobic reaction. Primary effluent during pilot scale plant were shown as TCOD/TP ratio of 40~60 and TCOD/TKN ratio of 5~7. Effluent concentrations were 10 to 12mg/L as TN and 1mg/L as TP respectively. In lab scale experiments endogenous denitrification rate of ENR reactor ranges from 0.042 to $0.057gNO_3-N/gMv.d.$ $SP_{rel}/SCOD_{rm}$ was shown as from 0.13 to 0.17 in anaerobic reaction. These kinetic parameters are expected to be available for BNR(Biological Nutrient Removal) plant design and ENR reaction is available for nutrient removal in low strength wastewater.

  • PDF