• Title/Summary/Keyword: Efficiency of Iron Ore

Search Result 19, Processing Time 0.027 seconds

The Efficiency Assessment of the Iron Ore Brands Using DEA-AR Model in an Integrated Steel Mill (DEA-AR 모형을 이용한 일관제철소 철광석 브랜드별 효율성 평가)

  • Seong, Deokhyun;Byeon, Gwuiwon
    • Journal of Information Technology Services
    • /
    • v.12 no.4
    • /
    • pp.255-265
    • /
    • 2013
  • This paper proposes a DEA-AR model for the efficiency evaluation of the iron ore brands in an integrated steel mill. The input factor is defined as unit cost of each brand based on CIF and two output factors are chosen as Fe and Al which are the important ingredients of iron ore. The relative importance between two output factors is determined by several experts using AHP model. The efficiency of each brand is determined using DEA and DEA-AR models. The negative correlation between the DEA-AR efficiency and the unit cost (CIF) is shown as significant whereas no significant correlation exist between the efficiency and the output factors. Also, the Kruskal Wallis rank sum test shows that there exist efficiency differences among the iron ore types whereas no difference is shown among the countries. The result could be utilized in selecting good brands of iron ores based on the DEA-AR efficiency in an integrated steel mill.

Removal of Aqueous Cr(VI) using Magnetite Nanoparticles Synthesized from a Low Grade Iron Ore

  • Do, Thi May;Suh, Yong Jae
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.221-230
    • /
    • 2013
  • We demonstrated the efficacy of magnetic nanoparticles (MNPs) produced from a low grade iron ore as an adsorbent for the removal of Cr(VI), a toxic heavy metal anion present in wastewater. The adsorption of Cr(VI) by these MNPs strongly depended on the dosage of MNPs, the initial concentration of the Cr(VI) solutions, and pH. The highest Cr(VI) adsorption efficiency of 22.0 mg/g was observed at pH 2.5. The adsorption data were best fit with the Langmuir isotherm and corresponded to a pseudo-second-order kinetic model. The used adsorbent was regenerated by eluting in highly alkaline solutions. Sodium bicarbonate showed the highest desorption efficiency of 83.1% among various eluents including NaOH, $Na_2HPO_4$, and $Na_2CO_3$. Due to the high adsorption capacity, the simple magnetic separation, and the high desorption efficiency, this nano-adsorbent produced from inexpensive and abundant resources may attract the attention of the industries to apply for removing various metal anionic contaminants from wastewater.

Changes of Gas Conditions of Iron Ore Sintering Process with FGR (제철 소결의 배가스 순환 적용에 따른 가스 조건 변화)

  • Ahn, Hyungjun;Choi, Sangmin;Cho, Byungkook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.19-20
    • /
    • 2012
  • Flue gas recirculation(FGR) is applied to sintering process to cope with issues including plant efficiency and environmental effects. However, it inevitably brings changes of incoming and outgoing gas conditions as plant configurations. Objective of this study was to build a process model for a sintering bed using a flowsheet process simulator and obtain information of mass and heat balance for gas flows over various process configurations with FGR.

  • PDF

Transformation Characteristics of Chlorinated Aliphatic Hydrocarbon (CAH) Mixtures by Natural Ores (자연광석을 이용한 염소계 지방족 탄화수소 혼합물 변환 특성)

  • Son, Bong-han;Kim, Nam-hee;Hong, Kwang-pyo;Yun, Jun-ki;Lee, Chae-young;Kim, Young;Kwon, Soo-youl
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.712-722
    • /
    • 2007
  • This study screened three natural ores (iron, mangenase, and zinc), two types of slags, and two elemental metals (elemental iron and zinc) to evaluate transformation characteristics of CAH mixtures [e.g. Carbontetrachloride (CT), 1,1,1-Trichloroethane (1,1,1-TCA), and Perchloroethene (PCE)]. To select an effective metal medium to treat the CAH mixtures, we measured transformation capacities (CAH mass ultimately transformed/mass of metal added) and the degree of dechlorination. We also considered economical efficiency of the metal media by comparing the value, CAH mass ultimately transformed divided by the price of metal medium added. A simplified mathematical model adapting CAH transformation capacity, first-order transformation kinetics, and available mass of metal transforming CAH was developed and used for estimating CAH transformation rate coefficient and longevity of the metal medium. CAH transformation capacity for elemental iron and elemental zinc were 4258~7129 and $4215{\sim}6330{\mu}g\;CAH\;transformed/g$ metal added, respectively, which are a factor of 80~200 higher than slags and natural ores. They also showed a factor of 1.1 to 2.2 greater degree of dechlorination than the others. Among natural ores and slags, Zinc ore showed the highest transformation capacity, $47{\sim}53{\mu}g\;CAH\;transformed/g$ metal added. Although zinc ore have smaller transformation capacity than elemental metals, economical efficiency of zinc ore is a factor of 10~20 greater than elemental metals tested. Consequently, zinc ore would be more economical medium than the others tested in this study. We estimated the pseudo first-order transformation rate of zinc ore was in the order of CT > 1,1,1-TCA > PCE.

A Systems Engineering Approach for Developing An Automated Raw Material Sampling Plant (원료 샘플링 플랜트 자동화 시스템 개발을 위한 시스템엔지니어링 접근방안 연구)

  • Kwouk, Ho-Kyun;Hong, Dae-Geun;Suh, Suk-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.55-65
    • /
    • 2015
  • In steel making plant, sampling system for raw material such as iron ore, limestone is necessary for quality control purpose. For the sake of efficiency and productivity, automation of the sampling system is highly desirable. From technical standpoint, the development of the automated system requires multi-disciplinary domain knowledge such as mechanical engineering, industrial engineering, information technology and computer engineering. Up to present time, the development has been mainly carried out by a single domain expert with project manager. The automated system developed in this way caused problems in the final system. This paper suggests a systems engineering approach to the development of automation for raw material sampling plant via a tailored process called Plant Systems Engineering (PSE) Process based on ISO/IEC 15288. Through the PSE process, we could derive right requirements and architecture of the Systems Of Interest (SOI), and we were convinced that the PSE Process can be applied to many other Plant Systems.

Online analysis of iron ore slurry using PGNAA technology with artificial neural network

  • Haolong Huang;Pingkun Cai;Xuwen Liang;Wenbao Jia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2835-2841
    • /
    • 2024
  • Real-time analysis of metallic mineral grade and slurry concentration is significant for improving flotation efficiency and product quality. This study proposes an online detection method of ore slurry combining the Prompt Gamma Neutron Activation Analysis (PGNAA) technology and artificial neural network (ANN), which can provide mineral information rapidly and accurately. Firstly, a PGNAA analyzer based on a D-T neutron generator and a BGO detector was used to obtain a gamma-ray spectrum dataset of ore slurry samples, which was used to construct and optimize the ANN model for adaptive analysis. The evaluation metrics calculated by leave-one-out cross-validation indicated that, compared with the weighted library least squares (WLLS) approach, ANN obtained more precise and stable results, with mean absolute percentage errors of 4.66% and 2.80% for Fe grade and slurry concentration, respectively, and the highest average standard deviation of only 0.0119. Meanwhile, the analytical errors of the samples most affected by matrix effects was reduced to 0.61 times and 0.56 times of the WLLS method, respectively.

Evaluation of environmental impacts for the bogie of electric motor unit(EMU) using simplified life cycle assessment(S-LCA) (간략화된 전과정 평가를 이용한 전동차 대차의 환경영향 진단)

  • Kim Yong-Ki;Yoon Hee-Teak;Yang Yun-Hee;Lee Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.581-585
    • /
    • 2005
  • In this study, the environmental impacts of a bogie in the electric motor unit(EMU) were evaluated quantitatively using simplified life cycle assessment(S_LCA). Target was the bogie and life cycle inventory(LCI) database for the bogie was established. The software used for simplified LCA was PASS. Environmental impacts with the parts of the bogie were dependent on their weight significantly. Among impact categories, abiotic resource depletion(ARD) and global warming(GW) were shown dominantly. Global warming was occurred mainly due to the emission of CO₂released from energy consumption and abiotic resource depletion was caused mostly by the consumption of iron ore for the manufacturing of steel. Therefore, the environmental impacts of the bogie could be reduced by the light-weighting of EMU and the improvement of energy efficiency.

An Analysis on M&A Performance of Global Steel Companies through Competitiveness Variables (경쟁력 변수에 기초한 글로벌 철강업체의 M&A 성과)

  • Huh, Kwang-Sook;Kim, Jin-Han
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.1-14
    • /
    • 2009
  • This study empirically tests post-M&A performance through competitiveness variables based on extensive firm-based panel data over the past 26 years in the world steel industry. Different measures of profitability, productivity, efficiency, market share, and growth rate which are considered as critical factors of competitiveness are used in the analysis. In particular, this paper tries to separate M&A samples into two cases; horizontal integration (between steel makers) and vertical integration (between steel makers and iron ore suppliers/steel consuming firms). Merged firms show significant improvement in competitiveness relative to other individual firms in the steel industry.

Leaching of Iron and Aluminum from Red Mud and Preparation of Coagulants (적니로부터 철과 알루미늄의 침출 및 응집제의 제조)

  • Lee, Jae-Rok;Hwang, In-Gook;Bae, Jae-Heum
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.38-41
    • /
    • 2009
  • Red mud is generated as a waste byproduct during the production of aluminum hydroxide/alumina from bauxite ore in the Bayer process. In this study coagulants for wastewater treatment were prepared by leaching iron and aluminum from red mud with hydrochloric acid. The removal efficiency of heavy metal ions by the red mud coagulant increased with increasing the adjusted pH value of the synthetic wastewater. When the red mud coagulant was prepared, the leaching efficiency of Fe decreased with increasing the weight of red mud, while the pH value of the red mud coagulant increased. The solution of the red mud coagulant mixed with water was reacted again with red mud to produce the leached solution, which had higher concentrations of Fe and Al and a higher pH value than the red mud coagulant. Also, its pH value was comparable to that of other coagulants: $FeCl_3$ and $Fe_2(SO_4)_3$.