DOI QR코드

DOI QR Code

Removal of Aqueous Cr(VI) using Magnetite Nanoparticles Synthesized from a Low Grade Iron Ore

  • Do, Thi May (Nanomaterials Science and Engineering, University of Science and Technology) ;
  • Suh, Yong Jae (Nanomaterials Science and Engineering, University of Science and Technology)
  • Received : 2013.10.08
  • Accepted : 2013.12.10
  • Published : 2013.12.30

Abstract

We demonstrated the efficacy of magnetic nanoparticles (MNPs) produced from a low grade iron ore as an adsorbent for the removal of Cr(VI), a toxic heavy metal anion present in wastewater. The adsorption of Cr(VI) by these MNPs strongly depended on the dosage of MNPs, the initial concentration of the Cr(VI) solutions, and pH. The highest Cr(VI) adsorption efficiency of 22.0 mg/g was observed at pH 2.5. The adsorption data were best fit with the Langmuir isotherm and corresponded to a pseudo-second-order kinetic model. The used adsorbent was regenerated by eluting in highly alkaline solutions. Sodium bicarbonate showed the highest desorption efficiency of 83.1% among various eluents including NaOH, $Na_2HPO_4$, and $Na_2CO_3$. Due to the high adsorption capacity, the simple magnetic separation, and the high desorption efficiency, this nano-adsorbent produced from inexpensive and abundant resources may attract the attention of the industries to apply for removing various metal anionic contaminants from wastewater.

Keywords

References

  1. Alvarez, G. S., Foglia, M. L., Camporotondi, D. E., Tuttolomondo, M. V., Desimone, M. F., Diaz, L. E. (2011). A functional material that combines the Cr(VI) reduction activity of Burkholderia sp. with the adsorbent capacity of sol-gel materials, Journal of Materials Chemistry, 21, pp. 6359-6364. https://doi.org/10.1039/c0jm04112b
  2. Amin, M. M., Khodabakhshi, A., Mozafari, M., Bina, B. Kheiri, S. (2010). Removal of Cr(VI) from simulated electroplating wastewater by magnetite nanoparticles, Environmental Engineering and Management Journal, 9, pp. 921-927.
  3. Babel, S., Kurniawan, T. A. (2004). Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54, pp. 951-967. https://doi.org/10.1016/j.chemosphere.2003.10.001
  4. Badruddoza, A. Z. M., Shawon, Z. B. Z., Rahman, M. T., Hao, K. W., Hidajat, K., Uddin, M. S. (2013). Ionically modified magnetic nanomaterials for arsenic and chromium removal from water, Chemical Engineering Journal, 225, pp. 607-615. https://doi.org/10.1016/j.cej.2013.03.114
  5. Barquist, K., Larsen, S. C. (2010). Chromate adsorption on bifunctional, magnetic zeolite composites, Microporous and Mesoporous Materials, 130, pp. 197-202. https://doi.org/10.1016/j.micromeso.2009.11.005
  6. Cao, C. Y., Qu, J., Yan, W. S., Zhu, J. F., Wu, Z. Y., Song, W. G. (2012). Low-cost synthesis of flowerlike $\infty$- $Fe_{2}O_{3}$ nanostructures for heavy metal ion removal: adsorption property and mechanism, Langmuir, 28, pp. 4573-4579. https://doi.org/10.1021/la300097y
  7. Chowdhury, S. R., Yanful, E. K. (2010). Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal, Journal of Environmental Management, 91, pp. 2238-2247. https://doi.org/10.1016/j.jenvman.2010.06.003
  8. Di, Z. C., Ding, J., Peng, X. J., Li, Y. H., Luan, Z. K., Liang, J. (2006). Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles, Chemosphere, 62, pp. 861-865. https://doi.org/10.1016/j.chemosphere.2004.06.044
  9. Dong, A., Xie, J., Wang, W., Yu, L., Liu, Q., Yin, Y. (2010). A novel method for amino starch preparation and its adsorption for Cu(II) and Cr(VI), Journal of Hazardous Materials, 181, pp. 448-454. https://doi.org/10.1016/j.jhazmat.2010.05.031
  10. Duranoglu, D., Kaya, İ. G. B., Beker, U., Senkal, B. F. (2012). Synthesis and adsorption properties of polymeric and polymer‐based hybrid adsorbent for hexavalent chromium removal, Chemical Engineering Journal, 181-182, pp. 103-112. https://doi.org/10.1016/j.cej.2011.11.028
  11. Ho, Y. S., McKay, G. (1999). Pseudo‐second order model for sorption processes, Process Biochemistry, 34, pp. 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  12. Ho, Y. S. (2006). Review of second‐order models for adsorption systems, Journal of Hazardous Materials, B136, pp. 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043
  13. Hu, J., Chen, G., Lo, I. M. C. (2005a). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Research, 39, pp. 4528-4536. https://doi.org/10.1016/j.watres.2005.05.051
  14. Hu, J., Lo, I. M. C., Chen, G. (2004). Removal of Cr(VI) by magnetite nanoparticle, Water Science and Technology, 50, pp. 139-146.
  15. Hu, J., Lo, I. M. C., Chen, G. (2005b). Fast removal and recovery of Cr(VI) using surface‐modified jacobsite ($MnFe_{2}O_{4}$ ) nanoparticles, Langmuir, 21, pp. 11173-11179. https://doi.org/10.1021/la051076h
  16. Hu, J., Lo, I. M. C., Chen, G. (2007). Performance and mechanism of chromate (VI) adsorption by $\delta$‐FeOOHcoated maghemite ($\gamma-Fe_{2}O_{3}$) nanoparticles, Separation and Purification Technology, 58, pp. 76-82. https://doi.org/10.1016/j.seppur.2007.07.023
  17. Kendelewicz, T., Liu, P., Doyle, C. S., Brown, G. E., Nelson, E. J., Chambers, S. A. (1999). X‐ray absorption and photoemission study of the adsorption of aqueous Cr(VI) on single crystal hematite and magnetite surfaces, Surface Science, 424, pp. 219-231 https://doi.org/10.1016/S0039-6028(98)00940-6
  18. Li, Y., Gao, B., Wu, T., Sun, D., Li, X., Wang, B., Lu, F. (2009). Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide, Water Research, 43, pp. 3067-3075. https://doi.org/10.1016/j.watres.2009.04.008
  19. Lu, A. H., Salabas, E. L., Schuth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angewandte Chemie (International ed. in English), 46, pp. 1222-1244. https://doi.org/10.1002/anie.200602866
  20. Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 17, pp. 1247-1248. https://doi.org/10.1109/TMAG.1981.1061188
  21. Mishra, R. K., Rout, P. C., Sarangi, K., Nathsarma, K. C. (2010). A comparative study on extraction of Fe(III) from chloride leach liquor using TBP, Cyanex 921 and Cyanex 923, Hydrometallurgy, 104, pp. 298-303. https://doi.org/10.1016/j.hydromet.2010.07.003
  22. Mohan, D., Pittman Jr., C. U. (2006). Activated carbons and low cost adsorbents for remediation of tri‐ and hexavalent chromium from water, Journal of Hazardous Materials, B137, pp. 762-811. https://doi.org/10.1016/j.jhazmat.2006.06.060
  23. Peterson, M. L., Brown, G. E., Parks, G. A. (1996). Direct XAFS evidence for heterogeneous redox reaction at the aqueous chromium/magnetite interface, Colloids and Surfaces A‐Physicochemical and Engineering Aspects, 107, pp. 77-88. https://doi.org/10.1016/0927-7757(95)03345-9
  24. Reeder, R. J., Schoonen, M. A. A., Lanzirotti, A. (2006). Metal speciation and its role in bioaccessibility and bioavailability, Reviews in Mineralogy & Geochemistry, 64, pp. 59-113. https://doi.org/10.2138/rmg.2006.64.3
  25. Sharma, Y. C., Srivastava, V., Singh, V. K., Kaul, S. N., Weng, C. H. (2009). Nano‐adsorbents for the removal of metallic pollutants from water and wastewater, Environmental Technology, 30, pp. 583-609. https://doi.org/10.1080/09593330902838080
  26. Weng, C. H., Wang, J. H., Huang, C. P. (1997). Adsorption of Cr(VI) onto $ TiO_{2}$from dilute aqueous solutions, Water Science Technology, 35, pp. 55‐62.
  27. Zhang, Y., Li, Y., Li, J., Sheng, G., Zhang, Y., Zheng, X. (2012). Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero‐valent iron, Chemical Engineering Journal, 185-186, pp. 243-249 https://doi.org/10.1016/j.cej.2012.01.095

Cited by

  1. Optimization of factors affecting hexavalent chromium removal from simulated electroplating wastewater by synthesized magnetite nanoparticles vol.187, pp.1, 2015, https://doi.org/10.1007/s10661-014-4165-z
  2. Production of High-purity Magnetite Nanoparticles from a Low-grade Iron Ore via Solvent Extraction vol.53, pp.1, 2015, https://doi.org/10.9713/kcer.2015.53.1.39
  3. Nanocomposite with High Adsorption Capacity for Hexavalent Chromium vol.2016, pp.1687-4129, 2016, https://doi.org/10.1155/2016/2192647
  4. Removal of Chromium from a Tannery Wastewater by Using a Maghemite Nanoparticles vol.8, pp.10, 2017, https://doi.org/10.18178/ijesd.2017.8.10.1041