References
- Alvarez, G. S., Foglia, M. L., Camporotondi, D. E., Tuttolomondo, M. V., Desimone, M. F., Diaz, L. E. (2011). A functional material that combines the Cr(VI) reduction activity of Burkholderia sp. with the adsorbent capacity of sol-gel materials, Journal of Materials Chemistry, 21, pp. 6359-6364. https://doi.org/10.1039/c0jm04112b
- Amin, M. M., Khodabakhshi, A., Mozafari, M., Bina, B. Kheiri, S. (2010). Removal of Cr(VI) from simulated electroplating wastewater by magnetite nanoparticles, Environmental Engineering and Management Journal, 9, pp. 921-927.
- Babel, S., Kurniawan, T. A. (2004). Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54, pp. 951-967. https://doi.org/10.1016/j.chemosphere.2003.10.001
- Badruddoza, A. Z. M., Shawon, Z. B. Z., Rahman, M. T., Hao, K. W., Hidajat, K., Uddin, M. S. (2013). Ionically modified magnetic nanomaterials for arsenic and chromium removal from water, Chemical Engineering Journal, 225, pp. 607-615. https://doi.org/10.1016/j.cej.2013.03.114
- Barquist, K., Larsen, S. C. (2010). Chromate adsorption on bifunctional, magnetic zeolite composites, Microporous and Mesoporous Materials, 130, pp. 197-202. https://doi.org/10.1016/j.micromeso.2009.11.005
-
Cao, C. Y., Qu, J., Yan, W. S., Zhu, J. F., Wu, Z. Y., Song, W. G. (2012). Low-cost synthesis of flowerlike
$\infty$ -$Fe_{2}O_{3}$ nanostructures for heavy metal ion removal: adsorption property and mechanism, Langmuir, 28, pp. 4573-4579. https://doi.org/10.1021/la300097y - Chowdhury, S. R., Yanful, E. K. (2010). Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal, Journal of Environmental Management, 91, pp. 2238-2247. https://doi.org/10.1016/j.jenvman.2010.06.003
- Di, Z. C., Ding, J., Peng, X. J., Li, Y. H., Luan, Z. K., Liang, J. (2006). Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles, Chemosphere, 62, pp. 861-865. https://doi.org/10.1016/j.chemosphere.2004.06.044
- Dong, A., Xie, J., Wang, W., Yu, L., Liu, Q., Yin, Y. (2010). A novel method for amino starch preparation and its adsorption for Cu(II) and Cr(VI), Journal of Hazardous Materials, 181, pp. 448-454. https://doi.org/10.1016/j.jhazmat.2010.05.031
- Duranoglu, D., Kaya, İ. G. B., Beker, U., Senkal, B. F. (2012). Synthesis and adsorption properties of polymeric and polymer‐based hybrid adsorbent for hexavalent chromium removal, Chemical Engineering Journal, 181-182, pp. 103-112. https://doi.org/10.1016/j.cej.2011.11.028
- Ho, Y. S., McKay, G. (1999). Pseudo‐second order model for sorption processes, Process Biochemistry, 34, pp. 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
- Ho, Y. S. (2006). Review of second‐order models for adsorption systems, Journal of Hazardous Materials, B136, pp. 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043
- Hu, J., Chen, G., Lo, I. M. C. (2005a). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Research, 39, pp. 4528-4536. https://doi.org/10.1016/j.watres.2005.05.051
- Hu, J., Lo, I. M. C., Chen, G. (2004). Removal of Cr(VI) by magnetite nanoparticle, Water Science and Technology, 50, pp. 139-146.
-
Hu, J., Lo, I. M. C., Chen, G. (2005b). Fast removal and recovery of Cr(VI) using surface‐modified jacobsite (
$MnFe_{2}O_{4}$ ) nanoparticles, Langmuir, 21, pp. 11173-11179. https://doi.org/10.1021/la051076h -
Hu, J., Lo, I. M. C., Chen, G. (2007). Performance and mechanism of chromate (VI) adsorption by
$\delta$ ‐FeOOHcoated maghemite ($\gamma-Fe_{2}O_{3}$ ) nanoparticles, Separation and Purification Technology, 58, pp. 76-82. https://doi.org/10.1016/j.seppur.2007.07.023 - Kendelewicz, T., Liu, P., Doyle, C. S., Brown, G. E., Nelson, E. J., Chambers, S. A. (1999). X‐ray absorption and photoemission study of the adsorption of aqueous Cr(VI) on single crystal hematite and magnetite surfaces, Surface Science, 424, pp. 219-231 https://doi.org/10.1016/S0039-6028(98)00940-6
- Li, Y., Gao, B., Wu, T., Sun, D., Li, X., Wang, B., Lu, F. (2009). Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide, Water Research, 43, pp. 3067-3075. https://doi.org/10.1016/j.watres.2009.04.008
- Lu, A. H., Salabas, E. L., Schuth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angewandte Chemie (International ed. in English), 46, pp. 1222-1244. https://doi.org/10.1002/anie.200602866
- Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 17, pp. 1247-1248. https://doi.org/10.1109/TMAG.1981.1061188
- Mishra, R. K., Rout, P. C., Sarangi, K., Nathsarma, K. C. (2010). A comparative study on extraction of Fe(III) from chloride leach liquor using TBP, Cyanex 921 and Cyanex 923, Hydrometallurgy, 104, pp. 298-303. https://doi.org/10.1016/j.hydromet.2010.07.003
- Mohan, D., Pittman Jr., C. U. (2006). Activated carbons and low cost adsorbents for remediation of tri‐ and hexavalent chromium from water, Journal of Hazardous Materials, B137, pp. 762-811. https://doi.org/10.1016/j.jhazmat.2006.06.060
- Peterson, M. L., Brown, G. E., Parks, G. A. (1996). Direct XAFS evidence for heterogeneous redox reaction at the aqueous chromium/magnetite interface, Colloids and Surfaces A‐Physicochemical and Engineering Aspects, 107, pp. 77-88. https://doi.org/10.1016/0927-7757(95)03345-9
- Reeder, R. J., Schoonen, M. A. A., Lanzirotti, A. (2006). Metal speciation and its role in bioaccessibility and bioavailability, Reviews in Mineralogy & Geochemistry, 64, pp. 59-113. https://doi.org/10.2138/rmg.2006.64.3
- Sharma, Y. C., Srivastava, V., Singh, V. K., Kaul, S. N., Weng, C. H. (2009). Nano‐adsorbents for the removal of metallic pollutants from water and wastewater, Environmental Technology, 30, pp. 583-609. https://doi.org/10.1080/09593330902838080
-
Weng, C. H., Wang, J. H., Huang, C. P. (1997). Adsorption of Cr(VI) onto
$ TiO_{2}$ from dilute aqueous solutions, Water Science Technology, 35, pp. 55‐62. - Zhang, Y., Li, Y., Li, J., Sheng, G., Zhang, Y., Zheng, X. (2012). Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero‐valent iron, Chemical Engineering Journal, 185-186, pp. 243-249 https://doi.org/10.1016/j.cej.2012.01.095
Cited by
- Optimization of factors affecting hexavalent chromium removal from simulated electroplating wastewater by synthesized magnetite nanoparticles vol.187, pp.1, 2015, https://doi.org/10.1007/s10661-014-4165-z
- Production of High-purity Magnetite Nanoparticles from a Low-grade Iron Ore via Solvent Extraction vol.53, pp.1, 2015, https://doi.org/10.9713/kcer.2015.53.1.39
- Nanocomposite with High Adsorption Capacity for Hexavalent Chromium vol.2016, pp.1687-4129, 2016, https://doi.org/10.1155/2016/2192647
- Removal of Chromium from a Tannery Wastewater by Using a Maghemite Nanoparticles vol.8, pp.10, 2017, https://doi.org/10.18178/ijesd.2017.8.10.1041