• Title/Summary/Keyword: Efficiency calibration

Search Result 333, Processing Time 0.022 seconds

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

Integrated calibration weighting using complex auxiliary information (통합 칼리브레이션 가중치 산출 비교연구)

  • Park, Inho;Kim, Sujin
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.427-438
    • /
    • 2021
  • Two-stage sampling allows us to estimate population characteristics by both unit and cluster level together. Given a complex auxiliary information, integrated calibration weighting would better reflect the level-wise characteristics as well as multivariate characteristics between levels. This paper explored the integrated calibration weighting methods by Estevao and Särndal (2006) and Kim (2019) through a simulation study, where the efficiency of those weighting methods was compared using an artificial population data. Two weighting methods among others are shown efficient: single step calibration at the unit level with stacked individualized auxiliary information and iterative integrated calibration at each level. Under both methods, cluster calibrated weights are defined as the average of the calibrated weights of the unit(s) within cluster. Both were very good in terms of the goodness-of-fit of estimating the population totals of mutual auxiliary information between clusters and units, and showed small relative bias and relative mean square root errors for estimating the population totals of survey variables that are not included in calibration adjustments.

Design and Characteristic Measurement of 8000 mm Large Aperture Integrating Sphere

  • Zhang, Zhao;Wan, Zhi;Li, Xiansheng;Liu, Hongxing;Sun, Jingxu;Liu, Zexun;Wang, Yamin;Ren, Jianwei;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.500-509
    • /
    • 2016
  • Integrating spheres play a central role in the radiometric calibration of remote sensors. With the development of the wide field of view (FOV) remote sensors, aperture diameters of remote sensors are becoming larger and larger. To satisfy the radiometric calibration requirements of full FOV and full aperture, an 8000mm diameter large aperture integrating sphere uniform source with a variable exit port was designed and manufactured. This integrating sphere will be used for pre-launch test and radiometric calibration of remote satellites. In this paper, optical theories were used to design the output spectral radiance. The LightTools software based on ray-tracing simulation method was used to determine the best combination and distribution of inner light sources. A spectral experiment was made to verify the spectral radiance design. To reduce the influence of longtime power-on, a new characteristic measurement method was developed to obtain the radiation characteristic of the integrating sphere, which could greatly improve the measuring efficiency. This method could also be applied to measure other large aperture uniform sources. The obtained results indicate that the spatial uniformity is 98.35%, and the angular uniformity at center position is 98.78%.

Uncertainty Analysis on the Simulations of Runoff and Sediment Using SWAT-CUP (SWAT-CUP을 이용한 유출 및 유사모의 불확실성 분석)

  • Kim, Minho;Heo, Tae-Young;Chung, Sewoong
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.681-690
    • /
    • 2013
  • Watershed models have been increasingly used to support an integrated management of land and water, non-point source pollutants, and implement total daily maximum load policy. However, these models demand a great amount of input data, process parameters, a proper calibration, and sometimes result in significant uncertainty in the simulation results. For this reason, uncertainty analysis is necessary to minimize the risk in the use of the models for an important decision making. The objectives of this study were to evaluate three different uncertainty analysis algorithms (SUFI-2: Sequential Uncertainty Fitting-Ver.2, GLUE: Generalized Likelihood Uncertainty Estimation, ParaSol: Parameter Solution) that used to analyze the sensitivity of the SWAT(Soil and Water Assessment Tool) parameters and auto-calibration in a watershed, evaluate the uncertainties on the simulations of runoff and sediment load, and suggest alternatives to reduce the uncertainty. The results confirmed that the parameters which are most sensitive to runoff and sediment simulations were consistent in three algorithms although the order of importance is slightly different. In addition, there was no significant difference in the performance of auto-calibration results for runoff simulations. On the other hand, sediment calibration results showed less modeling efficiency compared to runoff simulations, which is probably due to the lack of measurement data. It is obvious that the parameter uncertainty in the sediment simulation is much grater than that in the runoff simulation. To decrease the uncertainty of SWAT simulations, it is recommended to estimate feasible ranges of model parameters, and obtain sufficient and reliable measurement data for the study site.

Evaluation of HSPF Model Applicability for Runoff Estimation of 3 Sub-watershed in Namgang Dam Watershed (남강댐 상류 3개 소유역의 유출량 추정을 위한 HSPF 모형의 적용성 평가)

  • Kim, So Rae;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.328-338
    • /
    • 2018
  • The objective of this study was to evaluate the applicability of a HSPF (Hydrological Simulation Program-Fortran) model for runoff estimation in the Namgang dam watershed. Spatial data, such as watershed, stream, land use, and a digital elevation map, were used as input for the HSPF model, which was calibrated and validated using observed runoff data from 2004 to 2015 for three stations (Sancheong, Shinan, Changchon) in the study watershed. Parameters for runoff calibration were selected based on the user's manual and references, and parameter calibration was done by trial and error. The $R^2$ (determination coefficient), RMSE (root-mean-square error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (relative mean absolute error) were used to evaluate the model's performance. Calibration and validation results showed that annual mean runoff was within a ${\pm}5%$ error in Sancheong and Shinan, whereas there was a14% error in Changchon. The model performance criteria for calibration and validation showed that $R^2$ ranged from 0.80 to 0.92, RMSE was 2.33 to 2.39 mm/day, NSE was 0.71 to 0.85, and RMAE was 0.37 to 0.57 mm/day for daily runoff. Visual inspection showed that the simulated daily flow, monthly flow, and flow exceedance graph agreed well with observations for the Sancheong and Shinan stations, whereas the simulated flow was higher than observed at the Changchon station.

Parameter Calibration of Storage Function Model and Flood Forecasting (1) Calibration Methods and Evaluation of Simulated Flood Hydrograph (저류함수모형의 매개변수 보정과 홍수예측 (1) 보정 방법론과 모의 홍수수문곡선의 평가)

  • Song, Jae Hyun;Kim, Hung Soo;Hong, Il Pyo;Kim, Sang Ug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.27-38
    • /
    • 2006
  • The storage function model (SFM) has been used for the flood forecasting in Korea. The SFM has a simple calculation process and it is known that the model is more reasonable than linear model because it considers non-linearity of flood runoff. However, the determination of parameters is very difficult. In general, the trial and error method which is an manual calibration by the decision of a model manager. This study calibrated the parameters by the trial and error method and optimization technique. The calibrated parameters were compared with the representative parameters which are used in the Flood Control Centers in Korea. Also, the evaluation indexes on objective functions and calibration methods for the comparative analysis of simulation efficiency. As a result, the Genetic Algorithm showed the smallest variation in objective functions and, in this study, it is known that the objective function of SSR (Sum of Squared of Residual) is the best one for the flood forecasting.

Markerless camera pose estimation framework utilizing construction material with standardized specification

  • Harim Kim;Heejae Ahn;Sebeen Yoon;Taehoon Kim;Thomas H.-K. Kang;Young K. Ju;Minju Kim;Hunhee Cho
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.535-544
    • /
    • 2024
  • In the rapidly advancing landscape of computer vision (CV) technology, there is a burgeoning interest in its integration with the construction industry. Camera calibration is the process of deriving intrinsic and extrinsic parameters that affect when the coordinates of the 3D real world are projected onto the 2D plane, where the intrinsic parameters are internal factors of the camera, and extrinsic parameters are external factors such as the position and rotation of the camera. Camera pose estimation or extrinsic calibration, which estimates extrinsic parameters, is essential information for CV application at construction since it can be used for indoor navigation of construction robots and field monitoring by restoring depth information. Traditionally, camera pose estimation methods for cameras relied on target objects such as markers or patterns. However, these methods, which are marker- or pattern-based, are often time-consuming due to the requirement of installing a target object for estimation. As a solution to this challenge, this study introduces a novel framework that facilitates camera pose estimation using standardized materials found commonly in construction sites, such as concrete forms. The proposed framework obtains 3D real-world coordinates by referring to construction materials with certain specifications, extracts the 2D coordinates of the corresponding image plane through keypoint detection, and derives the camera's coordinate through the perspective-n-point (PnP) method which derives the extrinsic parameters by matching 3D and 2D coordinate pairs. This framework presents a substantial advancement as it streamlines the extrinsic calibration process, thereby potentially enhancing the efficiency of CV technology application and data collection at construction sites. This approach holds promise for expediting and optimizing various construction-related tasks by automating and simplifying the calibration procedure.

Establishing performance test center for a small hydropower (소수력 발전설비의 성능시험센터 구축)

  • Kim, Young-Joon;Kim, Sang-Gyun;Lee, Dong-Keun;Park, Ju-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.660-663
    • /
    • 2009
  • Currently in Korea, the lack of facilities and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic small hydropower turbine, and makes it difficult to objectively evaluate the performance of hydro turbine. Therefore Korean institute of water and environment in K-water planned making a basis of performance test of small hydropower by using our flowmeter calibration system the largest one in Korea. We planned the maximum measurable power of hydro turbine will be 200 kW in our system. Improving the efficiency of small hydropower system can achieve the additional development benefit about 1.5 billion won per year.

  • PDF

Evaluation of the Measurement of Trace Phenols by Adsorption/Thermal Desorption/Gas Chromatography/Mass Spectrometry (ATD/GC/MS) in Artificial Air (흡착관/열탈착 GC/MS 방법에 의한 모사시료 중의 미량 페놀 분석에 관한 평가)

  • 허귀석;이재환;황승만;정필갑;유연미;김정우;이대우
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.127-137
    • /
    • 2002
  • Phenolic compounds in air are toxic even at their low concentrations. We had evaluated a total of five phenolic compounds (Phenol, o-Cresol, m-Cresol, 2-Nitrophenol and 4-Chloro-3-methylphenol) in artificial air using a combination of ATD/GC/MS. To compare the adsorption efficiency of these phenolic compounds, three adsorbents (Tenax TA, Carbotrap and Carbopack B) were tested. Tenax TA adsorbent was most effective of all the adsorbents used for the efficiency test. Five phenolic compounds were found to be very stable on adsorbent tubes for 4 days at room temperature. Detection limit of five phenolic compounds ranged from 0.05 to 0.08 ppb (when assumed to collect 10 L air). The calibration curve was linear over the range of 22∼ 164 ng. The reproducibility was less than 4%. Sampling of duplicate pairs (DPs) was made to demonstrate duplicate precision and sampling efficiency.

Development and Evaluation of Hy-CPC (Hy-CPC의 개발 및 성능평가)

  • Lee, Hong-Ku;Hwang, In-Kyu;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.10 no.3
    • /
    • pp.93-97
    • /
    • 2014
  • Condensation particle counter (CPC) has been one of the most important basic instrument for measuring number concentration of submicron aerosols. The principle of the CPC is to expose aerosols to a supersaturated vapor and cool down which causes adiabatic expansion. The particles grow by heterogenous nucleation to a sufficient size for easy detection by optical method. However, for growth by condensation, CPC essentially needs both saturater and condensor causing a heavy system. Therefore, it is hard to install commercial CPC to tethered balloon package system. In this study, we developed customized CPC for tethered balloon package system called Hy-CPC which is lighter and smaller in structure than commercial CPCs, and evaluated activation efficiency and detection efficiency by Hy-CPC using electrostatic method (electrometer and Faraday cup).