• Title/Summary/Keyword: Effective tube

Search Result 830, Processing Time 0.029 seconds

Characteristic of Heat and Mass Transfer on Inner Ribbed Notched Fin Tube Absorber (내면가공 핀튜브 흡수기의 열 및 물질전달특성)

  • 설원실;권오경;문춘근;정용옥;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.478-485
    • /
    • 2000
  • An experimental study of the absorption process of water vapor into lithium bromide solution was performed. For the purpose of development of high performance absorption chiller-heater utilizing Lithium Bromide solution as working fluid, the absorber is the most effective to improve the performance of an absorber because it requires the largest heat transfer area in an absorption chiller-heater system. This paper introduces bare tube and inner ribbed notched fin tube for the absorber of absorption chiller-heaters. Inner ribbed notched fin tube has about 10∼20% higher heat and mass transfer performance than bare tube conventionally used in absorbers and the it is expected to perform high heat and mass transfer. This paper will provide important information on the selection of absorber tubes in commercial absorption chill-heaters.

  • PDF

Oxygen Transfer in Animal Cell Culture by Using a Silicone Tube as an Oxygenator (실리콘 튜브를 이용한 동물세포 배양장치의 산소전달)

  • 정흥채;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.445-450
    • /
    • 1992
  • An enhancement of the oxygen transfer rate in a 1$\ell$ bioreactor for mammalian cell culture by using a silicone rubber tubing as an oxygenator was investigated. When the silicone membrane was used to supply oxygen to the culture broth, the oxygen transfer coefficients ($k_{\iota}a$) measured in deionized-distilled water were markedly increased. Effect of surface aeration without the tubing aeration was very low under $1.0hr^{-1}$ of $k_{\iota}a$. The enhancing effects of agitation rates on $k_{\iota}a$ were much more effective than those of aeration rates. The increase of $k_{\iota}a$ with increasing tube length was observed as a result of the large surface area for oxygen supply. However, 2 m of the tube length was adequate for a 1$\ell$ vessel. The larger blade type of impeller was effective to enhance the kLa values because of its high mixing intensity. In culture medium supplemented with 5% serum, kLa values were reduced to approximately 40% probably due to the viscosity. We also obtained the normal cell concentration of $5{\times}10^6$ cells/m$\ell$ of HepG2 on microcarriers, which could be achieved in a typical bioreactor for animal cell culture.

  • PDF

Evaluation of Radiation Dose to Patients according to the Examination Conditions in Coronary Angiography (심장동맥 조영 검사 시 검사 조건에 따른 환자 선량 평가)

  • Yong-In Cho
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.509-517
    • /
    • 2023
  • This study analyzed imaging conditions and exposure index through clinical information collection and dose calculation programs in coronary angiography examinations. Through this, we aim to analyze the effective dose according to examination conditions and provide basic data for dose optimization. In this study, ALARA(As Low As Reasonably Achievable)-F(Fluoroscopy), a program for evaluating the radiation dose of patients and the collected clinical data, was used. First, analysis of imaging conditions and exposure index was performed based on the data of the dose report generated after coronary angiography. Second, after evaluating organ dose according to 9 imaging directions during coronary angiography, with the LAO fixed at 30°, dose evaluation was performed according to tube voltage, tube current, number of frames, focus-skin distance, and field size. Third, the effective dose for each organ was calculated according to the tissue weighting factors presented in ICRP(International Commission on Radiological Protection) recommendations. As a result, the average sum of air kerma during coronary angiography was evaluated as 234.0±112.1 mGy, the dose-area product was 25.9±13.0 Gy·cm2, and the total fluoroscopy time was 2.5±2.0 min. Also, the organ dose tended to increase as the tube voltage, milliampere-second, number of frames, and irradiation range increased, whereas the organ dose decreased as the FSD increased. Therefore, medical radiation exposure to patients can be reduced by selecting the optimal tube voltage and field size during coronary angiography, maximizing the focal-skin distance, using the lowest tube current possible, and reducing the number of frames.

Decompression Device Using a Stainless Steel Tube and Wire for Treatment of Odontogenic Cystic Lesions: A Technical Report

  • Jung, Eun-Joo;Baek, Jin-A;Leem, Dae-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.6
    • /
    • pp.308-310
    • /
    • 2014
  • Decompression is considered an effective treatment for odontogenic cystic lesions in the jaw. A variety of decompression devices are successfully used for the treatment of keratocystic odontogenic tumors, radicular cysts, dentigerous cysts, and ameloblastoma. The purpose of these devices is to keep an opening between the cystic lesion and the oral environment during treatment. The aim of this report is to describe an effective decompression tube using a stainless steel tube and wire for treatment of jaw cystic lesions.

Design of Low Noise Axial-Tube Fan (저소음 축류형 소형홴의 개발)

  • Kim, K.-H.;Lee, S.;Kim, B.-H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.17-22
    • /
    • 2001
  • Tube axial fans were designed to provide effective cooling for a personal computer by using $DasignFan^{TM}$ software. With basic input parameters of flow rate, pressure rise, rotating speed, and fan diameter, three dimensional geometry of blade is automatically generated and its performance and overall sound pressure level are predicted. In this steady, the newly developed fans of 60 mm and 80 mm diameters were proved to provide a very promising mode of low noise, compared with manufactured products.

  • PDF

Hydroformability and mechanical properties of A16061 tubes on different extrusion type (알루미늄 6061 압출재의 제조공정에 따른 온간액압성형성과 기계적 특성 연구)

  • Yi, H.K.;Jang, J.H.;Kwon, S.O.;Lee, Y.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.254-257
    • /
    • 2007
  • In this study, hydroformability and mechanical properties of pre- and post- heat treated Al6061 tubes at different extrusion type were investigated. For the investigation, as-extruded, full annealed and T6-treated Al 6061 tubes at different extrusion type were prepared. To evaluate the hydroformability, uni-axial tensile test and free bulge test were performed at room temperature and $200^{\circ}C$. Also mechanical properties of hydroformed part at various pre- and post-heat treatments were estimated by tensile test. And the tensile test specimens were obtained from hexagonal prototype hydroformed tube at $200^{\circ}C$. As for the heat treatment, hydroformability of full annealed tube is 25% higher than that of extruded tube. The tensile strength and elongation were more than 330MPa and 12%, respectively, when hydroformed part was post-T6 treated after hydroforming of pre- full annealed tube. However, hydroformed part using T6 pre treated tube represents high strength and low elongation, 8%. Therefore, the T6 treatment after hydroforming for as-extruded tube is cost-effective. Hydroformability of Al6061 tube showed similar value for both extrusion types. But flow stress of seam tube showed $20{\sim}50MPa$ lower value.

  • PDF

Numerical Analysis of Added Mass Coefficient for Outer Tubes of Tube Bundle in a Circular Cylindrical Shell (원통 내부에 배열된 외곽 전열관의 유체 부가질량계수 해석)

  • Yang, Keum-Hee;Ryu, Ki-Wahn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.203-209
    • /
    • 2016
  • According to the wear detection history for the steam generator tubes in the nuclear power plant, the outer tubes inside the steam generator have more problems on the flow-induced vibration than inner tubes. Many researchers and engineers have used a specified added mass coefficient for a given tube array during the design stage of the steam generator even though the coefficient is not constant for entire tube in cylindrical shell. The aim of this study is to find out the distribution of added mass coefficients for each tube along the radial location. When numbers of tubes inside a cylindrical shell are increased, values of added mass coefficients are also increased. Added mass coefficients at outer tubes are less than those of inner tubes and they are decreased with increasing the gap between the outermost tube and the cylindrical shell. It also turns out when the gap between the outermost tube and the cylindrical shell approaches infinite value, the added mass coefficient converges to an asymptotic value of given tube array in a free fluid field.

A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube (다채널 알루미늄 평판관내 R22와 R134a의 흐름 응축 열전달 성능 비교)

  • 서영호;박기정;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.589-598
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22 and R134a were measured on a horizontal 9 hole aluminum multi-channel tube. The main test section in the refrigerant loop was made of a flat multi-channel aluminum tube of 1.4 mm hydraulic diameter and 0.53 m length. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in the vapor qualities of 0.1∼0.9 at mass flux of 200∼400 kg/$m^2$s and heat flux of 7.3∼7.7 ㎾/$m^2$ at the saturation temperature of 4$0^{\circ}C$. All popular correlations in single-phase subcooled liquid and flow condensation originally developed for large single tubes predicted the present data of the flat tube within 20% deviation when effective heat transfer area is used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Thermal insulation for the outer tube section surrounding the test tube for the transport of heat transfer fluid is very important in fluid heat-ing or cooling type heat transfer experimental apparatus.

Wear Characteristics of Multi- span Tube Due to Turbulence Excitation (다경간 전열관의 난류 가진에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Sung, Bong-Zoo;Park, Chi-Yong;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.

Effect of scattered x-rays on subject contrast and image sharpness

  • Arimura, Hidetaka;Date, Takuji;Morikawa, Kaoru;Kubota, Hideaki;Matsumoto, Masao;Kanamori, Hitoshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 1999.11a
    • /
    • pp.278-281
    • /
    • 1999
  • The purpose of this study is to investigate the effect of the scattered x-rays on the subject contrast and image sharpness for various tube voltages. For the purpose, we measured the scatter-to-primary ratio(SPR) for the tube voltages f 50 to 100kV and obtained the tube voltage dependence of the subject contrast of an aluminum plate in a polymethyl methacrylate(PMMA) phantom. Furthermore, the overall modulation transfer functions(MTFs), which consist of MTFs of a screen-film system and scatter FTMs, were obtained for tube voltages of 50 to 100 kV. The subject contrast decreased with the tube voltage due to that the SPR increased with the tube voltage and that the difference in effective linear attenuation coefficients between the object and its surroundings decreased with the tube voltage. The maximum frequency of the overall MTF decreased from about 2 mm$\^$-1/ to 1 mm$\^$-1/ with the tube voltage increasing from 50 to 100 kV.

  • PDF