• Title/Summary/Keyword: Effective temperature

Search Result 5,788, Processing Time 0.037 seconds

Comparison of Static and Dynamic Solvent Extraction of Polychlorinated Dibenzofurans from Fly Ash

  • Yang, Jeong Soo;Jeong, Jang Hwan;Yu, Euy Kyung
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.295-301
    • /
    • 2004
  • In this study, static and dynamic solvent extractions are compared for more efficient extraction of polychlorinated dibenzofurans (PCDFs) from fly ash. Static solvent extraction rather than dynamic extraction showed a higher recovery of PCDFs, which was adsorbed strongly with fly ash. The effects of parameters, such as temperature, toluene-isopropyl alcohol mixture, static and dynamic time flow rate, and solvent volume on the extraction were investigated and the variations in average recoveries of PCDFs were explained. In both extractions, temperature was an effective parameter because the higher temperature gave the higher recoveries. In dynamic solvent extraction, dynamic time was more effective than flow rate and solvent volume for the extraction of PCDFs from fly ash. Multi-layer column chromatography on neutral and acidic silica gel with n-hexane was used for cleaning up the extracts. The quantification of the PCDFs extracted was performed using HPLC-UV.

Comparison of Removal Rates of Sedimentation and DAF(Dissolved Air Flotation) for various Different Conditions in Water Treatment (정수처리공정의 침전법을 개선하기 위한 대체공정으로 용존공기부상법(DAF)을 사용할 때 여러조건에 대한 처리효율 비교)

  • Kim, Mi-Jeong;Lee, Byoung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.118-125
    • /
    • 1997
  • Conventional sedimentation method has some limitations for turbidity removal in water treatment because drinking water sources are getting polluted. Removal rates of turbidity using DAF and sedimentation process were compared for various water conditions to know whether DAF is effective to improve sedimentation process. Water samples were clay(gravity 2.65) water 100mg/l, H raw water, mixed water of H raw water and clay 100mg/l, and mixed water of HA(Humic Acid) 5mg/l and clay 100mg/l. Other parameters were temperature, coagulants(Alum, $FeCl_3$), and treatment time. Water temperature greatly affected in removal rates of turbidity for sedimentation and DAF. Generally DAF was more effective in removal rates of turbidity than sedimentation at the same experimental condition. Removal rates of $UV_{254}$ were high to over 90%, and independent of temperature and coagulant.

  • PDF

The effect of the number of nozzle holes on the energy separation (보텍스튜브의 노즐홀수가 에너지분리에 미치는 영향)

  • 유갑종;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.692-699
    • /
    • 1999
  • The vortex tube is a sample device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. The phenomena of energy separation through the vortex tube were investigated experimentally, to see the effects of the number of nozzle holes on the energy separation. The experiment was carried out with the number of nozzle holes from 1 to 10 by varying inlet pressure and cold mass fraction. The experimental results were indicated that the effective number of nozzle holes for the best cooling performance was found as 4. Also, to find effective use in a given operation conditions, the temperature difference of cold air and the cooling capacity of vortex tube was compared. The result is that cooling capacity was more important than temperature difference of cold air.

  • PDF

Numerical method for Thermal Convection of air in Ondol Room (실내 기류의 수치해석)

  • Min Man-Ki;Kim Joo-Kyoon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.7 no.1
    • /
    • pp.4-12
    • /
    • 1978
  • At Grashof numbers $10^{10},\;5{\times}10^{10}$, and $10^{11}$ nonlinear partial differential equations for two dimensional thermal circulation of air in a rectangular enclosure heated from below are solved numerically by finite difference explicit methood in time-dependent form. Two vertical walls and ceiling are held at low temperature and floor at high temperture. Results are compared with From's numerical solutions at $10^9{\lesssim}\;N_{Gr}\;<10^{13}$. The effective draft temperature fields are also obtained to examine cold draft problem, there included a line of constant effective draft temperature $-1.667^{\circ}C$ which is essentially Houghten's $80\%$ comfort data.

  • PDF

Reduction of Exhaust Emissions Using Various Injector Configurations in Low Temperature Diesel Combustion (분사기 형상 변경을 통한 저온 디젤 연소의 배기 배출물 저감)

  • Jung, Yong-Jin;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.16-23
    • /
    • 2011
  • Low temperature combustion is one of the advanced combustion technology in an internal combustion engine to reduce soot and nitrogen oxides simultaneously. In present experiment three kinds of injector were used to investigate the influence of injection angle and number of nozzle holes on the low temperature combustion in a heavy duty diesel engine. Low temperature diesel combustion is realized from the exhaust gas recirculation rate of 60%. Indicated mean effective pressure of low temperature combustion corresponds to the 70% level of conventional diesel engine combustion. Reduction of hydrocarbon and carbon monoxide, which are produced in low temperature combustion because of the low combustion temperature and a deficit of oxygen, was achieved by using various injector configuration. The result of experiment with $100^{\circ}$ injection angle and 8 holes showed that reductions in hydrocarbon and carbon monoxide could be achieved 58% and 27% respectively maintaining the 7% increased indicated mean effective pressure in low temperature diesel combustion compared with conventional injector.

Fundamental Study for Development of Pre-Heater for Warm In-Place Recycling in Korea (국내 현장중온재생공법의 프리히터 개발을 위한 기초연구)

  • Kim, Dae-Hun;Kim, Seung-Hoon;Kwon, Soo-Ahn;Kim, Yongjoo;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.31-37
    • /
    • 2015
  • PURPOSES : To design a pre-heater for warm in-place recycling equipment, three different heating systems were evaluated to determine their thermal efficiency. METHODS: In this study, a $30cm{\times}30cm{\times}15cm$ wheel-tracking specimen was used to measure the inner temperature as a function of the heating system. The inner temperature of the specimen was measured with a data logger at the surface, and at depths of 1cm, 2cm, 3cm, 4cm, and 5cm. To evaluate the thermal efficiency, the researchers used three different types of equipment, namely, IR, a heating wire, and a gas burner. RESULTS: The IR heating system exhibits a higher level of performance than the others to achieve the target temperature at a depth of 5cm in the specimen. The gas burner system was capable of heating the surface to a temperature of up to $600^{\circ}C$. The other types, however, cannot heat the surface up to 600. The thermal efficiencies were measured based on the laboratory conditions. CONCLUSIONS: To find the most effective system for application to the development of a pre-heater for warm in-place recycling, various systems (IR, heating wire, gas burner) were examined in the laboratory. As a result, it was found that the hot plate of a gas burner system provides the highest temperature at the surface of the asphalt but, of all the systems, the IR system provides the best internal temperature increase rate. Furthermore, a gas burner can age the asphalt binder of the surface layer as a result of the high temperature. However, the gas burner cannot attain the target temperature at 5cm. The IR system, on the other hand, is effective at increasing the internal temperature of asphalt.

Study on Economic analysis and Dessemination Policy of Unused Energy (미활용에너지의 경제적 효과 및 보급지원방안 연구)

  • An, Hyung-Jun;Baek, Sung-Kwon;Heo, Eunn-Yeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.95-98
    • /
    • 2008
  • Temperature difference energy is a good energy source replacing the fossil fuels. In the study, we classified the temperature difference energy as 4 types by the source & using method. For the understanding economic property of temperature difference energy, we tried simle economic analysis. As the result, Pay back period of 4 case of the temperature difference energy are from 1.23 to 12.65 years. Major factors influenced economic effect are operation time and energy user distance from the temperature difference energy source. If we can select optimal capacity and look for more effient energy users, Temperature difference energy play a important role of replacing fossil energy. So, for dess emination of temperature difference energy, we suggest that temperature difference energy must be included in renewable energy. Applying the effective methods among various promotion program of renewable energy policy, utilization of temperature difference energy could be activated.

  • PDF

Factors Affecting Temperature of Urban Parks (도시공원의 기온에 영향을 미치는 요인)

  • 윤용한;송태갑
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.39-48
    • /
    • 2000
  • The purpose of this study is to investigate the factors affecting temperature of urban parks to grasp the relationship between the land coverage in open space as well as the forest condition and decreasing city temperature by difference of purposed are. Futhermore, this research interpreted the relationship between wind direction, air temperature, the land coverage of the green space, the number of tree, green volume, height of tree and the mitigation of city temperature with the revolution analysis. The result of this study is that cool air in open space move leeward and decreasing city temperature is influenced by the difference of the land coverage in open space. Specifically, in order of the arbo $r_{-a}$rbor in the forest zone, the increase of the number of trees was related with temperature surrounding significantly. This study found that the use possibility of the green volume was recognized as the index of the green volume relative to air temperature surrounding. Green space of the city control area is more effective decreasing temperature than that of housing zone.

  • PDF

Effect of Tension and Wind Velocity on Temperature of ACSR Overhead Conductor (장력과 풍속이 ACSR 가공송전선의 온도에 미치는 영향)

  • Kim Shang-Shu;Kim Byung-Geol;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.480-485
    • /
    • 2006
  • A research was undertaken on the thermal properties and behavior of the conductors in a controlled chamber, which was designed to implement the outdoor air temperature, heat and wind conditions With ACSR $410mm^2$ overhead conductors, we measured the maximum temperature of the conductors and the temperature gradient from the core to the surface regions as a function of current, tension, wind velocity and outdoor air temperature. This test also provided a comparative analysis between the measured temperature values of conductors in the controlled chamber and the theoretical calculations of ANSI/IEEE at normal condition. There was not much influence of tension on the conductor temperature. However, the compactness of conductor wires increased with an increase in tension, which eventually increased the coefficient of effective thermal conductivity and, accordingly the conductor temperature was reduced more or less.

Studies on Management of Effective Temperature and Humidity in Greenhouse at Summer Season (하절기 효율적인 하우스 온도 습도 관리에 관한 연구)

  • 우영회;남윤일;송천호;김형준;김동억
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 1994
  • It is necessary to effective temperature and humidity management for normal growth of crops in protected cultivation during the summer season. Because the highest temperature of vinyl house inhibit normal growth of crop and decrease of crop production or marketability in summer season. Finally, the vinyl house was impossible some crop cultivation in summer season. This study was conducted to investigate effective and economic method for temperature drop in protected cultivation during the summer season. 1. In medium size vinyl house(5$\times$13$\times$3m), the effect of temperature drop appeared the highest in treatment of shading with aluminium thermal curtain+fog system+ventilation with fan. The effect of temperature drop was about 1$0^{\circ}C$ lower than outer air temperature and about 4$^{\circ}C$ lower than outer soil temperature. 2. The effect of temperature drop according to shading with aluminium thermal curtain+fog system+ventilation with fan during the highest temperature of summer season Jul., 20 to Aug., 21 was appeared about 8$^{\circ}C$ lower than outdoor above ground(1.2m) and about 7$^{\circ}C$ lower than outdoor surface ground. 3. The changes of solar radiation during a day according to shading with aluminium thermal curtain+ventilation with fan and shading with black curtain+ventilation with fan treatments was appeared respectively about 29.3%, 32.5% of outdoor solar radiation a fine day and respectively about 27.4%, 31.8% of outdoor solar radiation a cloudy day.

  • PDF