• Title/Summary/Keyword: Effective permeability

Search Result 533, Processing Time 0.02 seconds

Soft Magnetic Properties of CoFeAlO Thin Films for Ultrahigh Frequency Applications (고주파용 CoFeAlO계 박막의 자기적 특성)

  • Kim, Hyeon-Bin;Yun, Dae-Sik;Ha, N.-D.;Kim, Jong-O
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.17-20
    • /
    • 2005
  • The influence of $O_2$ partial pressure on saturation mgnetization, coercivity, anisotropy field and effective permeability (over 1GHz) of as-deposited Co-Fe-Al-O thin films, which were fabricated by RF magnetron reactive sputtering method, were investigated. The $Co_{69.9}Fe_{20.5}A_{14.4O_{5.2}$ thin film fabricated at $O_2$ partial pressure of 4% exhibits the best magnetic softness with saturation magnetization 4${$pi}$Ms of 18.1 kG, coercivity of 0.82 Oe, anisotropy field ($H_k$) of Oe, and effective permeability (${\mu}_{eff}$) about 1,024 above 1 GHz. the electrical resistivity of Co-Fe-Al-O thin films were increased with increasing $O_2$ partial pressure, the electrical resistivity of $Co_{69.9}Fe_{20.5}A_{14.4O_{5.2}$ thin film with the best soft magnetic properties was 560.7 ${\mu}{\Omega}$am. Therefore, It is assumed that the good soft magnetic properties of $Co_{69.9}Fe_{20.5}A_{14.4O_{5.2}$ thin film results from high electrical resistivity and large anisotropy field.

An Experimental Study on the Effect of Anti-Histamine of the Sungmagalkuntang and Sungmagalkuntang-plus-samultang (승마갈근탕(升麻葛根湯) 및 승마갈근탕합사물탕(升麻葛根湯合四物湯)의 항(抗) Histamine 효과(效果)에 관(關)한 연구(硏究))

  • Kim, Hyun-Ah;Jeong, Ji-Cheon;Pak, Sun-Dong
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.3
    • /
    • pp.207-222
    • /
    • 1994
  • In order to find out the effect of Anti-Histamine of the Sungmagalkuntang and Sungmagalkuntang-plus-samultang I've investigated the effect of the time to death, the peripheral vascular Pemeability, the amount of secretion of Gastric Juice, the total Acidity of Gastric Juice, the contraction of Intestine Tube by Histamine and the effect of the Skin-Reaction by the decrease of DNCB. These results are following ; 1. The effect of Mice's time to death by Histamine was that the injection group of sungmagalkungtang and the injection group of sungmagalkungtang-plus-samultang both have had the effect of the extention of the time to death, which indicated a statistical significance in comparison with comparative group. 2. The effect of the increased vascular permeability by Histamine was that the injection group of sungmagalkuntang and the injection group of sungmagalkuntang-plus-samultang both have had the effect of the restraint of the increased vascular permeability, which indicated a statistical significance in comparison with comparative group. 3. The effect of the the amount of the secretion of Gastric Juice by Histamine stimulus was that the injection group of sungmagalkuntang-plus-samultang only has had the effect of restraint of the increased of the secretion of Gastric Juice, which indicated a statistical significance in comparison with comparative group. 4. The effect of the change of total Acidity of Gastric Juice by Histamine's stimulus was that the injection group of sungmagalkuntang-plus-samultang only has had the effect of the restraint of the increase of total Acidity of Gastric Juice, which indicated a statistical significance in comparison with comparative group. 5. The effect of the contraction of Intestine Tube by Histamine was that sungmagalkuntang and sungmagalkuntang-plus-samultang both have had the effect of the contraction and the restraint. According to the increase of the density, the effect of the restraint was more clear. But the difference of the effects between two substances had little. 6. The effect of the reaction of skin by the decrease of DNCB was that the injection group of sungmagalkuntang and the injection group of sungmagalkuntang-plus-samultang have had the decreased effect of the Skin-Reaction in comparison with comparative group. sungmagalkuntang-plus-samultang aws more effective. In these results shown above, both sungmagalkuntang and sungmagalkuntang-plus-samultang was shown as more effective one.

  • PDF

Synergistic Effects of N-methyl-2-pyrrolidone on Skin Permeation of a Hydrophobic Active Ingredient (N-methyl-2-pyrrolidone 제제의 경피흡수촉진효과)

  • Lee, Geun-Soo;Lee, Dong-Hwan;Kim, Kyoung-Bum;Ko, Hyun-Joo;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • The formidable barrier property of the stratum cornemum and the high hydrophilicity of active ingredient make it difficult to permeate through the skin and reach to its site of action. The aim of this study was to investigate the effect of chemical penetration enhancers on the skin permeation of a hydrophilic cosmetic active ingredient, such as arbutin. The enhancing effects of N-methyl-2-pyrrolidone (NMP) on the permeation of a hydrophilic cosmetic active ingredient were evaluated by using Franz diffusion cell. The study indicated that NMP has considerable influence on the skin permeability. NMP was not only the most effective enhancer but also increased the skin permeability of arbutin approximately 1.3~1.5 fold compared with control without penetration enhancer. The lag time did not change with NMP, which suggested no effect of NMP on skin lipid fluidity. This suggest that arbutin co-permeated with NMP. The results indicate NMP is effective enhancer of a hydrophilic cosmetic active ingredient in penetration, with potential applications for drug delivery system.

The Influence of $O_2$ Partial Pressure on Soft Magnetic Properties of As-deposited Fe-Sm-O Thin Films (산소분압에 따른 Fe-Sm-O계 박막의 연자기적 성질)

  • Yoon, T.S.;Cho, W.S.;Koo, E.S.;Li, Ying;Park, J.B.;Kim, C.O.
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.755-759
    • /
    • 2000
  • The influence of $O_2$partial presure on saturation magnetization, coercivity and effective permeability(0.5~100MHz) of as-deposited Fe-Sm-O thin films, which were fabricated by RF magnetron reactive sputtering method, were investigated. The nanocrystalline Fe(sub)83.4Sm(sub)3.4O(sub)13.2 thin film fabricated at $O_2$partial pressure of 5% exhibits the best magnetic softness with saturation magnetization of 18kG, coercivity of 0.82 Oe and effective permeability about 2,600 at 0.5~100MHz. $\alpha$-Fe grain size is decreased with increasing $O_2$partial pressure. In case of $O_2$partial pressure of 10%, it is observed that FeO compound is formed and soft magnetic properties are decreased. The electrical resistivity of Fe-Sm-O thin films were increased with increasing $O_2$partial pressure, the electrical resistivity of Fe(sub)83.4Sm(sub)3.4O(sub)13.2 thin film with the best soft magnetic properties was 130 $\mu$$\Omega$cm. Therefore, It is assumed that the good soft magnetic properties of Fe(sub)83.4Sm(sub)3.4O(sub)13.2 thin film results from high electrical resistivity and decreasing $\alpha$-Fe grain size due to precipitation of Sm-Oxide phase.

  • PDF

A Study on the Variation of Groundwater Level in the Han River Estuary (The Effect of the Removing of a Weir) (한강 하구역에서의 지하수위 변화에 관한 연구(수중보 철거로 인한 영향))

  • Kim, Sang-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.589-601
    • /
    • 2008
  • The variation of groundwater level near the Shingok weir has been analyzed. To consider the soil inhomogeneity, coefficient of effective permeability was computed to be 0.313 m/day in the horizontal direction, and 0.0423 m/day in vertical direction. Anisotropic ratio is 7.19. The river water level drawdown (caused by the removing of the weir) causes the groundwater level drawdown, and 3 months are required for the new steady condition. and groundwater flows from Han river toward Gulpo stream before the removing of the weir, but when the weir removed, the flow direction changes. The groundwater level falls maximum 30 cm in the areas under the influence of Han river, but, in the areas near Kulpo stream, groundwater level falls about 10 cm. The amount of groundwater use in the study area was investigated to be $52m^3/day$ and in this condition, groundwater level falls maximum 1m (before or after the removing of Shingok weir). therefore, the variation of groundwater level caused by the removing of Shingok weir is less than that caused by the usual use of groundwater.

The Characteristics of Hydrogeological Parameters of Unconsolidated Sediments in the Nakdong River Delta of Busan City, Korea

  • Khakimov, Elyorbek;Chung, Sang Yong;Senapathi, Venkatramanan;Elzain, Hussam Eldin;Son, JooHyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.27-41
    • /
    • 2017
  • This study dealt with the characteristics and the interrelations of hydrogeological parameters such as hydraulic conductivity, dispersivity and effective porosity of unconsolidated sediments for providing the basic data necessary for the planning of the management and preservation of groundwater quality in the Nakdong River Delta of Busan City, Korea. Groundwater quality in this area has been deteriorated due to seawater intrusion, agricultural fertilizer and pesticide, industrial wastewater, and contaminated river water. The physical properties (grain size distribution, sediment type, sorting) and aquifer parameters (hydraulic conductivity, effective porosity, longitudinal dispersivity) were determined from grain size analysis, laboratory permeability test and column tracer test. Among 36 samples, there were 18 Sand (S), 7 Gravelly Sand (gS), 5 Silty Sand (zS), 5 Muddy Sand (mS), and 1 Sandy Silt (sZ). Hydraulic conductivity was determined through a falling head test, and ranged from $9.2{\times}10^{-5}$ to $2.9{\times}10^{-2}cm/sec$ (0.08 to 25.6 m/day). From breakthrough curves, dispersivity was calculated to be 0.35~3.92 cm. Also, effective porosity and average linear velocity were obtained through the column tracer test, and their values were 0.04~0.46 and 1.06E-04~6.49E-02 cm/sec, respectively. Statistical methods were used to understand the interrelations among aquifer parameters of hydraulic conductivity, effective porosity and dispersivity. The relation between dispersivity and hydraulic conductivity or effective porosity considered the sample length, because dispersivity was affected by experimental scale. The relations between dispersivity and hydraulic conductivity or effective porosity were all in inverse proportion for all long and short samples. The reason was because dispersivity was in inverse proportion to the groundwater velocity in case of steady hydrodynamic dispersion coefficient, and groundwater velocity was in proportion to the hydraulic conductivity or effective porosity. This study also elucidated that longitudinal dispersivity was dependent on the scale of column tracer test, and all hydrogeological parameters were low to high values due to the sand quantity of sediments. It is expected that the hydrogeological parameter data of sediments will be very useful for the planning of groundwater management and preservation in the Nakdong River Delta of Busan City, Korea.

Improvement of Water Resistant Properties of a Linerboard for Corrugated Fiberboard Box by Coating with Na-alginate (알긴산 코팅에 의한 골판지 상자 제조용 라이너 원지의 수분저항성 증진)

  • Kim, Eun-Jung;Rhim, Jong-Whan;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.762-766
    • /
    • 2006
  • To improve water resistance of paperboard used to manufacture the corrugated boxes, effect of surface coating of the liner- board with Na-alginate was investigated by determining the optimum processing conditions such as a optimum alginate concentration for surface coating, plasticizer content, concentration of divalent cations their immersion times, For the surface coating of the liner-board, 2.5% Na-alginate solution was found to be the optimum concentration, and the concentration of glycerol used as plasticizer was effective when 35% alginate concentration was use was Used Immersion of the alginate coated paperboard for 3 min in a $CaCl_2$ solution improved the water resistance properties. As a divalent cation for the insolubilization of the alginate films, $Cu^{2+}$ was found to be as effective as $Ca^{2+}$. Among the platicizers tested, sorbitol was the most effective in reducing water vapor permeability and water solubility of alginate coated paperboard.

A Study on the Evaluation of Dynamic Behavior and Liquefaction Cau8ed by Earthquake of Sea Dike Structures on the Ground (방조제 축조 예정지반의 지진에 의한 액상화 거동 평가)

  • 도덕현;장병욱;고재만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.43-56
    • /
    • 1993
  • The laboratory tests are performed on how the liquefaction potential of the sea dike structures on the saturated sand or silty sand seabed could be affected due to earthquake before and after construction results are given as follows ; 1. Earthquake damages to sea dike structures consist of lateral deformation, settlement, minor abnormality of the structures and differential settlement of embankments, etc. It is known that severe disasters due to this type of damages are not much documented. Because of its high relative cost of the preventive measures against this type of damages, the designing engineer has much freedom for the play of judgement and ingenuity in the selection of the construction methods, that is, by comparing the cost of the preventive design cost at a design stage to reconstruction cost after minor failure. 2. The factors controlling the liquefaction potential of the hydraulic fill structure are magnitude of earthquake(max. surface velocity), N-value(relative density), gradation, consistency(plastic limit), classification of soil(G & vs), ground water level, compaction method, volumetric shear stress and strain, effective confining stress, and primary consolidation. 3. The probability of liquefaction can be evaluated by the simple method based on SPT and CPT test results or the precise method based on laboratory test results. For sandy or silty sand seabed of the concerned area of this study, it is said that evaluation of liquefaction potential can be done by the one-dimensional analysis using some geotechnical parameters of soil such as Ip, Υt' gradation, N-value, OCR and classification of soils. 4. Based on above mentioned analysis, safety factor of liquefaction potential on the sea bed at the given site is Fs =0.84 when M = 5.23 or amax= 0.12g. With sea dike structures H = 42.5m and 35.5m on the same site Fs= 3.M~2.08 and Fs = 1.74~1.31 are obtained, respectively. local liquefaction can be expected at the toe of the sea dike constructed with hydraulic fill because of lack of constrained effective stress of the area.

  • PDF

Influence of Coating Agent and Particle Size on the Soft Magnetic Properties of Fe Based Nano Crystalline Alloy Powder Core (철기(Fe Based) 나노결정질 합금 분말코어의 코팅제 및 입도가 연자기적 특성에 미치는 영향)

  • Jang, S.J.;Choi, Y.J.;Kim, S.W.;Jeon, B.S.;Lee, T.H.;Song, C.B.;Namkung, J.
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.67-73
    • /
    • 2015
  • This is a basic research for improving soft magnetic property of Fe based nano crystalline alloy powder core. The main study is done around characteristics of permeability, core loss, and DC bias depending on amount of insulation coating agent and particle size. First, $Fe_{73.5}Si_{13.5}B_9Nb_3Cu_1$ amorphous alloy ribbon was fabricated by using the planar flow casting (PFC) device. Then, heat treatment and ball milling were done to obtain alloy powder. The amount of polyether imide (PEI) added to it was varied by 0.5, 1.0, 2.0, 2.5 wt% to have compression molding into $16ton/cm^2$. After going through crystalline heat treatment, the made toroidal nano crystalline powder core ($OD12.7mm^*ID7.62mm^*H4.75mm$) had smaller permeability as amount of insulation coating agent decreases. However, it was found out that core loss and DC bias characteristics have been improved. The reason for this results were expected to be because green density of power core decreases as amorphous alloy powder particles become smaller as amount of alloy powder insulation coating agent increases, it was determined that 1 wt% of insulation coating agent is appropriate. Also, for powder core made based on alloy powder size with amount of insulation coating agent fixed at 1 wt%, effective permeability and core loss were outstanding as particle size became bigger. However, characteristics of DC bias became worse as applied DC field increases. This is expected to be due to insulation effect, residual pores, or molding density of powder core resulting from thickness of coating on surface of alloy powder.

3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study (지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2009
  • We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.