• Title/Summary/Keyword: Effective elastic modulus

Search Result 186, Processing Time 0.03 seconds

A Study on the Undrained Characteristics of Highly plastic soils II: Factors on Strength (고소성토의 비배수 특성에 관한 연구 II: 비배수강도 영향요소)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4253-4258
    • /
    • 2012
  • The investigation of the undrained strength and the important several undrained geotechnical properties was, in detail, made for highly plastic soils using the field and laboratory testing results. The plastic index, activity, water content, and effective unit weight did not show the notable relationship with both Su and normalized Su. The OCR, sensitivity, and undrained elastic modulus presented remarkable tendency with normalized Su. It could be concluded that the use of the normalized Su may lead to the reasonable results then the normalized Su needs further research.

The Study on Properties of AAO(Anodic Aluminum Oxide) Structures with Hole Effect (Hole effect를 고려한 AAO(Anodic Aluminum Oxide) 구조물의 물성치에 대한 연구)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.186-193
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometer-scale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective methods to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazamandnia, Navid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.207-227
    • /
    • 2017
  • In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness direction in a functionally graded form. They can also be calculated through a micromechanical model where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated from the rule of mixture with those gained from the molecular dynamics simulations. The differential transform method (DTM) which is established upon the Taylor series expansion is one of the effective mathematical techniques employed to the differential governing equations of sandwich beams. Effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently influenced by these parameters.

A Study on the Applicability of Shrinkage Reduction Effect of Light-weight Aggregate Concrete (경량골재 콘크리트의 수축 저감효과에 관한 적용성 연구)

  • Lim, Sang-Jun;Bang, Chang-Joon;Park, Jong-Hyok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.175-176
    • /
    • 2011
  • Applying previous studies performed in the moisture transportation characteristics and shrinkage of lightweight concrete application of shrinkage reduction is to discuss. Applicability of shrinkage reduction effect of lightweight concrete applies for the analysis of PSC girder bridge beam placed on the construction site. Stress of the concrete bridge deck, rebar quantity is calculated by effective elastic modulus method and crack risk is assessed by moisture transport and differential shrinkage analysis. After approximately 10 days maximum tensile stress occurs 6MPa, similar to the case of normal concrete, a maximum tensile stress occurs 3MPa in lightweight concrete and comparing to normal concrete stress was reduced to approximately 50%. Normal and lightweight concrete crack index, respectively, is reduced 1.6 to 1.2, 1.2 to 0.9 in surface and boundary region. Therefore, reduction in shrinkage of concrete were able to confirm reduction of crack risk.

  • PDF

Estimation of Nanomechanical Properties of Nanosurfaces Using Phase Contrast Imaging in Atomic Force Microscopy (원자력현미경의 위상차영상을 이용한 나노표면의 미소기계적 특성 평가)

  • Ahn, Hyo-Sok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.115-121
    • /
    • 2007
  • Phase contrast imaging in atomic force microscopy showed a promise as an effective tool for better understanding of micromechanical properties of surfaces at nano scale. A qualitative estimation model for phase contrast images obtained with a tapping mode AFM was developed. This investigation demonstrated the high efficiency of combined analysis of topography and phase contrast images for characterizing nanosurfaces. Phase contrast images allowed estimation of relative stiffness(elastic modulus) of the sample surface. The phase contrast images revealed a significant inhomogeneity of the nano scale worn surfaces. Phase contrast images are also capable of revealing the formation of tribofilms.

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (진동응답을 최소화하는 비구속형 제진보의 제진 부위 최적설계)

  • Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.829-835
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing nitration responses by means of unconstrained damping layer treatment.

Vibration Analysis and Critical Speeds of Rotating Polar Orthotropic Disks, Part II : Analysis Results (극직교 이방성 회전원판의 진동해석 및 임계속도, II : 해석결과)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.247-254
    • /
    • 2006
  • This paper (Part II) provides the application results of the method presented in a companion paper (Part I) where the dynamic equation for rotating polar orthotropic disk is formulated and its solution method is considered. The natural frequencies and critical speed of polycarbonate CD are calculated to validate the present method and are shown to by very accurate. The critical speeds of typical GFRP and CFRP CD's are computed by aligning the fibers in radial and circumferential directions. The radially reinforced CFRP CD is shown to have the five times higher critical speed than that of the polycarbonate CD. The natural frequencies and critical speeds of disks with various elastic modulus ratios are obtained. The results show that the radially reinforced disk is more effective in increasing critical speed than the circumferentially reinforced disk.

A Study of Threshold stress during High Temperature Creep of $\textrm{BN}_f$/Al-5, wt% Mg Metal Matrix Composite (BN 입자 강화 Al-5wt% Mg 기지 복합재료의 고온 크립 변형에서의 임계응력 해석)

  • Song, M.H.;Kwon, H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.187-191
    • /
    • 2000
  • High temperature creep behaviour of Al-5 wt% Mg alloy reinforced with 7.5% BN flakes was studied. The composite specimens showed two main creep characteristics : (1) the value of the apparent stress exponent of the composite was high and varied with applied stress (2) the apparent activation energy for creep was much larger than that for self-diffusion in aluminum The true stress exponent of the composite was set equal to 5. Temperature dependence of the threshold stress of the composite was very strong. Which could not be rationalized by allowing for the temperature dependence of the elastic modulus change. AIN particles which were incorporated into the Al matrix during fabrication of the composite by the PRIMEXTM method were found to be effective barriers to dislocation motion and to give rise the threshold stress during creep of the composite

  • PDF

Natural Frequency of Elastic Supported Building Slab (탄성지지된 복합재료 상판의 고유 진동수)

  • 김덕현;이정호;박정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.215-222
    • /
    • 1997
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross-sections and with arbitrary boundary conditions was developed and reported by D. H. Kim in 1974. This method has been developed for two-dimensional problems including the laminated composite plates and was proved to be very effective for the plates with arbitrary boundary conditions and irregular sections. In this paper, the result of application of this method to the subject problem is presented. This problem represents the building slabs with a kind of passive and active control devices. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation on the natural frequency is thoroughly studied.

  • PDF

Nano-mechanical Characterization of Thin Film of Type I Collagen Fibrils by Atomic Force Microscopy (원자력 현미경을 이용한 Type I Collagen Fibrils 박막의 기계적 특성 연구)

  • Jeong, Gu-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.38-38
    • /
    • 2013
  • The mechanical cues that adherent cells derive from the extracellular matrix (ECM) can effect dramatic changes in cell migration, proliferation, and differentiation. Using a thin film of Type I collagen fibrils comprised of 100 nm to 200 nm collagen fibrils overlaying a bed of smaller fibrils, changes in cellular response to systematically controlled changes in mechanical properties of collagen was investigated. Further, an experimental and modeling approaches to calculate the elastic modulus of individual collagen fibrils, and thereby the effective stiffness of the entire collagen thin film matrix, from atomic force microscopy force spectroscopy data was performed. These results demonstrate an approach to analysis of fundamental properties of thin, heterogeneous, organic films, and add further insights into the mechanical properties of collagen fibrils that are of relevance to cell response to the ECM.

  • PDF