• Title/Summary/Keyword: Effective detection distance

Search Result 107, Processing Time 0.027 seconds

The earth mover's distance and Bayesian linear discriminant analysis for epileptic seizure detection in scalp EEG

  • Yuan, Shasha;Liu, Jinxing;Shang, Junliang;Kong, Xiangzhen;Yuan, Qi;Ma, Zhen
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.373-382
    • /
    • 2018
  • Since epileptic seizure is unpredictable and paroxysmal, an automatic system for seizure detecting could be of great significance and assistance to patients and medical staff. In this paper, a novel method is proposed for multichannel patient-specific seizure detection applying the earth mover's distance (EMD) in scalp EEG. Firstly, the wavelet decomposition is executed to the original EEGs with five scales, the scale 3, 4 and 5 are selected and transformed into histograms and afterwards the distances between histograms in pairs are computed applying the earth mover's distance as effective features. Then, the EMD features are sent to the classifier based on the Bayesian linear discriminant analysis (BLDA) for classification, and an efficient postprocessing procedure is applied to improve the detection system precision, finally. To evaluate the performance of the proposed method, the CHB-MIT scalp EEG database with 958 h EEG recordings from 23 epileptic patients is used and a relatively satisfactory detection rate is achieved with the average sensitivity of 95.65% and false detection rate of 0.68/h. The good performance of this algorithm indicates the potential application for seizure monitoring in clinical practice.

Clustering-based Monitoring and Fault detection in Hot Strip Roughing Mill (군집기반 열간조압연설비 상태모니터링과 진단)

  • SEO, MYUNG-KYO;YUN, WON YOUNG
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • Purpose: Hot strip rolling mill consists of a lot of mechanical and electrical units. In condition monitoring and diagnosis phase, various units could be failed with unknown reasons. In this study, we propose an effective method to detect early the units with abnormal status to minimize system downtime. Methods: The early warning problem with various units is defined. K-means and PAM algorithm with Euclidean and Manhattan distances were performed to detect the abnormal status. In addition, an performance of the proposed algorithm is investigated by field data analysis. Results: PAM with Manhattan distance(PAM_ManD) showed better results than K-means algorithm with Euclidean distance(K-means_ED). In addition, we could know from multivariate field data analysis that the system reliability of hot strip rolling mill can be increased by detecting early abnormal status. Conclusion: In this paper, clustering-based monitoring and fault detection algorithm using Manhattan distance is proposed. Experiments are performed to study the benefit of the PAM with Manhattan distance against the K-means with Euclidean distance.

An Improved Face Detection Method Using a Hybrid of Hausdorff and LBP Distance (Hausdorff와 LBP 거리의 융합을 이용한 개선된 얼굴검출)

  • Park, Seong-Chun;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, a new face detection method that is more accurate than the conventional methods is proposed. This method utilizes a hybrid of Hausdorff distance based on the geometric similarity between the two sets of points and the LBP distance based on the distribution of local micro texture of an image. The parameters for normalization and the optimal blending factor of the two different metrics were calculated from training sample images. Popularly used face database was used to show that the proposed method is more effective and robust to the variation of the pose, illumination, and back ground than the methods based on the Hausdorff distance or LBP distance. In the particular case, the average error distance between the detected and the true face location was reduced to 47.9% of the result of LBP method, and 22.8% of the result of Hausdorff method.

Camera and LiDAR Sensor Fusion for Improving Object Detection (카메라와 라이다의 객체 검출 성능 향상을 위한 Sensor Fusion)

  • Lee, Jongseo;Kim, Mangyu;Kim, Hakil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.580-591
    • /
    • 2019
  • This paper focuses on to improving object detection performance using the camera and LiDAR on autonomous vehicle platforms by fusing detected objects from individual sensors through a late fusion approach. In the case of object detection using camera sensor, YOLOv3 model was employed as a one-stage detection process. Furthermore, the distance estimation of the detected objects is based on the formulations of Perspective matrix. On the other hand, the object detection using LiDAR is based on K-means clustering method. The camera and LiDAR calibration was carried out by PnP-Ransac in order to calculate the rotation and translation matrix between two sensors. For Sensor fusion, intersection over union(IoU) on the image plane with respective to the distance and angle on world coordinate were estimated. Additionally, all the three attributes i.e; IoU, distance and angle were fused using logistic regression. The performance evaluation in the sensor fusion scenario has shown an effective 5% improvement in object detection performance compared to the usage of single sensor.

Visibility detection approach to road scene foggy images

  • Guo, Fan;Peng, Hui;Tang, Jin;Zou, Beiji;Tang, Chenggong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4419-4441
    • /
    • 2016
  • A cause of vehicle accidents is the reduced visibility due to bad weather conditions such as fog. Therefore, an onboard vision system should take visibility detection into account. In this paper, we propose a simple and effective approach for measuring the visibility distance using a single camera placed onboard a moving vehicle. The proposed algorithm is controlled by a few parameters and mainly includes camera parameter estimation, region of interest (ROI) estimation and visibility computation. Thanks to the ROI extraction, the position of the inflection point may be measured in practice. Thus, combined with the estimated camera parameters, the visibility distance of the input foggy image can be computed with a single camera and just the presence of road and sky in the scene. To assess the accuracy of the proposed approach, a reference target based visibility detection method is also introduced. The comparative study and quantitative evaluation show that the proposed method can obtain good visibility detection results with relatively fast speed.

A Study on the Validation of Effective Angle of Particle Deposition according to the Detection Efficiency of High-purity Germanium Gamma-ray Detector (고순도 저마늄 감마선 검출기의 검출효율에 따른 유효입체각 검증에 관한 연구)

  • Chang, Boseok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.487-494
    • /
    • 2020
  • The distance between the source and the detector, the diameter of the detector, and the volume effect of the radiation source result in a change in solid angle at the detector entrance, which affects the determination of detection efficiency by causing a difference in path length within the detector. A typical analysis method for calculating solid angles was useful only for a source (60Co) with a simple geometric structure, so in this experiment, the distance between the detector and the source was measured by switching on for up to 25 cm with the reference point of window cap 0.5 cm. In addition, 450 and 1000 ㎖ Marinelli beaker of standard volumetric sources were closely adhered to the detector. For circular point sources co-axial with the detector, the change in the solid angle to the distance from the detector window is equal to half the square radius of the source versus the square radius of the detector, if the resulting relationship of the calculation analysis results in the detector being less than the radius of the source. Since the solid angular difference is 0.5 the result of Monte Carlo is acceptable. The relationship between detector and source distance is shown. Solid angles have been verified to decrease rapidly with distance. Measurement and simulation results for a volumetric source show a difference of ±1.01% from a distance of 0 cm and less than 4 % when the distance is reduced to 5 and 10 cm. It can be seen that the longer distance, the smaller efficiency angle, and the exponential increase in attenuation as the energy decreases, is reflected in the calculation of efficiency. Thus, the detection efficiency has proved sufficient for the use of solid angle and Monte Carlo codes.

Unsupervised Single Moving Object Detection Based on Coarse-to-Fine Segmentation

  • Zhu, Xiaozhou;Song, Xin;Chen, Xiaoqian;Lu, Huimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2669-2688
    • /
    • 2016
  • An efficient and effective unsupervised single moving object detection framework is presented in this paper. Given the sparsely labelled trajectory points, we adopt a coarse-to-fine strategy to detect and segment the foreground from the background. The superpixel level coarse segmentation reduces the complexity of subsequent processing, and the pixel level refinement improves the segmentation accuracy. A distance measurement is devised in the coarse segmentation stage to measure the similarities between generated superpixels, which can then be used for clustering. Moreover, a Quadmap is introduced to facilitate the refinement in the fine segmentation stage. According to the experiments, our algorithm is effective and efficient, and favorable results can be achieved compared with state-of-the-art methods.

Open API-based Conversational Voice Interaction Scheme for Intelligent IoT Applications for the Digital Underprivileged (디지털 소외계층을 위한 지능형 IoT 애플리케이션의 공개 API 기반 대화형 음성 상호작용 기법)

  • Joonhyouk, Jang
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.22-29
    • /
    • 2022
  • Voice interactions are particularly effective in applications targeting the digital underprivileged who are not proficient in the use of smart devices. However, applications based on open APIs are using voice signals only for short, fragmentary input and output due to the limitations of existing touchscreen-oriented UI and API provided. In this paper, we design a conversational voice interaction model for interactions between users and intelligent mobile/IoT applications and propose a keyword detection algorithm based on the edit distance. The proposed model and scheme were implemented in an Android environment, and the edit distance-based keyword detection algorithm showed a higher recognition rate than the existing algorithm for keywords that were incorrectly recognized through speech recognition.

An Algorithm for Leak Locating using Coupled Vibration of Pipe-Water (배관-유체 연성진동을 이용한 누수지점 탐지알고리듬 개발연구)

  • Lee, Yeong-Seop;Yun, Dong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.985-990
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband noise from a leak location and can be propagated to both directions of water pipes. This sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than 300m.

  • PDF

An Algorithm for Leak Locating using Coupled Vibration of Pipe-Fluid (배관-유체 연성진동을 이용한 누수지점 탐지 알고리듬 개발 연구)

  • Lee, Young-Sup;Yoon, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.798-803
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband sound from a leak location and this sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than 300m.

  • PDF