• 제목/요약/키워드: Effective cutting depth

검색결과 57건 처리시간 0.026초

Drill 가공에 있어서 단계이송가공에 관한 기초적 연구 (A Study on Step Feed Working in Drilling)

  • 전언찬
    • 한국정밀공학회지
    • /
    • 제6권3호
    • /
    • pp.24-31
    • /
    • 1989
  • By use of the machining center, step-feed drilling was operated under the variety of conditions as to materials, tools and cutting conditions. Based on this study the following conclusions can be drawn : 1) The cutting force can be diminished by utilizing the step-feed working; specially the most effective was it for the brass among the carbon steel, the brass, and the cast iron. 2) Tool life can be enlarged more than double when three-step-feed working is used. 3) For the constant cutting-depth(30mm), the most optimal number of stepping is 3.

  • PDF

세라믹 및 초경합금 성형체의 피절삭성 (Machinability of ceramic and WC-Co green compacts)

  • 이재우
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1520-1530
    • /
    • 1997
  • Machining pressed compacts of ceramic and WC-Co materials can be the most cost effective way of forming the bodies prior to sintering when the required number of pieces is small. In this study, in order to clarify the machinability for turning, the $Si_3N_4$ and the WC-Co green compacts unsintered were machined under different cutting conditions with various tools. Absorbing chips by vacuum hose decreases tool wear. The tool wear becomes larger in the order of the ceramic, CBN and cemented carbide tools in machining the $Si_3N_4$ green compacts. In machining the WC-Co green compacts, the tool wear becomes larger in the order of the ceramic, cemented carbide and CBN tools. The land of cutting edge does not affect tool wear. When machining with cemented carbide tool, the tool wear i equal cutting length is nearly identical in spite of the increase of cutting spee, and the roughness of machined surface was the best in the cutting speed of 90 m/min. The tool wear decreases with the increase of rake angle and relief angle and with the decrease of nose radius. The machined surfaces become worse with the increase of feed rate and depth of cut, and with the decrease of rake angle and relief angle. The tool wear is not affected by the feed and depth of cut.

고능률 선삭 가공을 위한 가상 가공 기반의 이송량 최적화 (Feed Optimization Based on Virtual Manufacturing for High-Efficiency Turning)

  • 강유구;조재완;김석일
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.960-966
    • /
    • 2007
  • High-efficient machining, which means to machine a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on virtual manufacturing was proposed to realize the high-efficient machining in turning process through the cutting power regulation. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

볼엔드밀의 고속가공에서 절삭력 분석 및 평가에 관한 연구 (A study on the Analysis and Evaluation of Cutting forces for High Speed Machining by a Ball-end mill)

  • 이춘만;류승표;고태조;정종윤;정원지
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.167-174
    • /
    • 2005
  • High-speed machining is one of the most effective technologies to improve productivity Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the analysis and evaluation of cutting force in high-speed machining. Cutter rotation directions, slope directions, spindle revolution and depth of cut are control factors for cutting force. The effect of the control factors on cutting force is investigated for the high speed machining of STD11.

상향절삭에 의한 깊은 홈 가공시 정밀도 향상에 대한 연구 (Improvement of the Accuracy in Machining Deep Pocket by Up Milling)

  • 이상규;고성림
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.220-228
    • /
    • 1999
  • The machining accuracy has been improved with the development of NC machine tools and cutting tools. However, it is difficult to obtain a high degree of accuracy when machining deep pocket with long end mill, since machining accuracy is mainly dependant on the stiffness of the cutting tool. To improve surface accuracy in machining deep pocket using end mill, the performance by down cut and up cut is compared theoretically and experimentally. To verify usefulness of up milling, various experiments were carried out. As a result, it is found that up milling produce more accurate surface than down milling in machining deep pocket. For effective application of up milling, various values in helix angle, number of teeth, radial depth of cut and axial depth of cut are applied in experiment.

  • PDF

다이아몬드 터닝의 절삭력 측정용 tool holder를 이용한 미세절삭력 특성 연구 (Measurement of Cutting Force in Diamond Turning Process)

  • 정상화;김상석;도철진;홍권희;김건희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.938-941
    • /
    • 2001
  • A tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. In this research, tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. In addition, tool holder system is verified by vibration test using accelerometer. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Cutting velocity has been determined to have negligible effects between 4 and 21㎧.(6) Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a sample model may not be sufficient to describe the forces produced in the diamond turning process.

  • PDF

선삭에서 일정 절삭력 유지를 위한 구속 적응제어에 관한 연구 (A Study on the Application of Adaptive Control Constraint to Maintain Constant Cutting force in Turning)

  • 김인수;황홍연;김광준
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.376-382
    • /
    • 1986
  • 본 연구에서는 절삭과정의 정적특성에 관한 식과 그에 포함된 계수를 실험을 통하여 결정함으로써 절삭과정을 모델링하고, 절삭시에 검출되는 주절삭력에 따라 이 송속도를 제어하며 절삭과정의 변동에 관계없이 시스템의 안정을 보장하는 제어 프로 그램 및 제어장치를 개발하여 선삭작업에 응용하여 보고자 한다.

선삭에서 절삭조건에 따라 설치각이 절삭저항에 미치는 영향 (A Effect of Cutting Resistance by Setting Angle According to the Cutting Condition in Turning)

  • 신근하
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.88-95
    • /
    • 1997
  • This study provides the useful actual data instead of the experience data using in industrial fields. Especially, values of each components of cutting force are effective in the rake angle, setting angle and cutting area. Many researches have been made on the work piece materials, kinds of bite materials, rake angle, nose radius and depth of cut, but a few on the bite setting angle. In order to select optimal cutting speed, it was summarized the following results are achieved; A chieved that an affect of cutting resistance on the setting angle is a little under giving experimental conditions and therefore a worker can be choose the value of it randomly.

  • PDF

선삭에서 절삭조건에 따라 설치각이 절삭저항에 미치는 영향 (A Effect of Cutting Resistance by Setting Angle According to the Cutting Condition in Turning)

  • 신근하
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.103-110
    • /
    • 1997
  • This study provides the useful actual data instead of the experience data using in industrial fields. Especially, values of each components of cutting force are effective in the rake angle, setting angle and cutting area. Many researches have been made on the work piece materials, kinds of bite materials, rake angle, nose radius and depth of cut, but a few on the bite setting angle. In order to select optimal cutting speed, it was summarized the following results are achieved; A chieved that an affect of cutting resistance on the setting angle is a little under giving experimental conditions and therefore a worker can be choose the value of it randomly.

  • PDF

볼엔드밀 가공에서 공구 런아웃 매개변수 검출 (Cutter Runout Parameter Estimation in Ball-End Milling)

  • 김창주;김성윤;주종남
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.171-178
    • /
    • 2000
  • In this study, an indirect method to estimate the setup runout of a ball-end mill from cutting force signal is proposed. This runout makes cutting forces of each tooth of the milling cutter unequal. By transforming the cutting force model from time domain to frequency domain through time-convolution theorem, the magnitude and phase angle of runout can be explicitly expressed with material constants, cutting conditions, and force signal. The static setup runout can be obtained by extrapolating estimated effective runout, which is independent of feedrate but decreases linearly with increase in axial depth of cut. The setup runout estimated by slot cutting experiments, shows good agreement with the measured one.

  • PDF