• Title/Summary/Keyword: Effective Rainfall

Search Result 493, Processing Time 0.022 seconds

Geomorphologic Nash Model with Variable Width Function

  • Thuy, Nguyen Thi Phuong;Kim, Joo-Cheol;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.212-212
    • /
    • 2015
  • So far, geomorphologic dispersion due to the heterogeneity characteristics of flow paths in a basin has been demonstrated as a major factor affecting to the hydrologic response function of a catchment. This effect has considered by many previous studies taking into account flow path length factors, especially in the application of width function. Based upon the analysis of topographic index, another important geomorphologic factor extracted from DEM data, this work presents a new factor named saturation to evaluate its effects to the formation of the well-known instantaneous unit hydrograph (IUH) in Nash model and drainage structure in a river basin. First, the geomorphologic parameters corresponding to different saturation conditions are computed from DEM data with the support of GIS software. Then, in the combination of hydrologic and geomorphologic data, effective rainfall in each saturation degree and the Nash parameters are calculated using excel. Finally, the verification process with direct runoff data is conducted using Fortran programming. This process is applied to five sub-watersheds in Bocheong catchment ($485.21km^2$) in Korea where the necessary data are available and believable. The results from this approach will improve researchers and students'understandings about the relationship between rainfall and runoff and its relation with drainage structure within a catchment.

  • PDF

Analysis of Variance of Paddy Water Demand Depending on Rice Transplanting Period and Ponding Depth (이앙시기 및 담수심 변화에 따른 논벼 수요량 변화 분석)

  • Cho, Gun-Ho;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.75-85
    • /
    • 2021
  • This study evaluated variations in the paddy rice water demand based on the continuous changing in rice transplanting period and ponding depth at the four study paddy fields, which represent typical rice producing regions in Korea. Total 7 scenarios on rice transplanting periods were applied while minimum ponding depth of 0 and 20 mm were applied in accordance with maximum ponding depth ranging from 40 mm to 100 mm with 20 mm interval. The weather data from 2013 to 2019 was also considered. The results indicated that the highest rice water demand occurred at high temperature and low rainfall region. Increased rice transplanting periods showed higher rice water demand. The rice water demand for 51 transplanting days closely matched with the actual irrigation water supply. In case of ponding depth, the results showed that the minimum ponding depth had a proportional relationship with rice water demand, while maximum ponding depth showed the contrary results. Minimum ponding depth had a greater impact on rice water demand than the maximum ponding depth. Therefore, these results suggest that increasing the rice transplanting period, which reflects the current practice is desirable for a reliable estimation of rice water demand.

Assessment of geological hazards in landslide risk using the analysis process method

  • Peixi Guo;Seyyed Behnam Beheshti;Maryam Shokravi;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.451-454
    • /
    • 2023
  • Landslides are one of the natural disasters that cause a lot of financial and human losses every year It will be all over the world. China, especially. The Mainland China can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Climate and physiography are always at risk of landslides. The purpose of this research is to prepare a landslide hazard map using the Hierarchical Analysis Process method. In the GIS environment, it is in a part of China watershed. In order to prepare a landslide hazard map, first with Field studies, a distribution map of landslides in the area and then a map of factors affecting landslides were prepared. In the next stage, the factors are prioritized using expert opinion and hierarchical analysis process and nine factors including height, slope, slope direction, geological units, land use, distance from Waterway, distance from the road, distance from the fault and rainfall map were selected as effective factors. Then Landslide risk zoning in the region was done using the hierarchical analysis process model. The results showed that the three factors of geological units, distance from the road and slope are the most important have had an effect on the occurrence of landslides in the region, while the two factors of fault and rainfall have the least effect The landslide occurred in the region.

Empirical Study on the Prediction of Rain Attenuation in EHF(44 GHz) Band (EHF(44 GHz) 대역 강우 감쇠 특성 예측 연구)

  • Park Yong-Ho;Lee Joo-Hwan;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.848-854
    • /
    • 2005
  • The attenuation due to rain has been recognized as one of the major causes of unavailability of radio communication systems operating above about 10 GHz. To design radio links for telecommunications and to evaluate attenuation due to rainfall, it is important to have a good prediction model for rain attenuation such as a model for drop-size distribution of rainfall(DSD), a theoretical model for specific rain attenuation, and an empirical model fur effective path length through rain. In this paper, the extended generalized gamma distribution for drop-size distribution, based on the measurements in Chnugnam National University, is proposed as a new DSD model, and predicted specific attenuation characteristics using proposed DSD model and rain attenuation values in the 44 GHz satellite path using ITU-R effective path length model, are analysed. The predicted attenuation levels are also compared. It is found that an accurate prediction method for DSD is very important to reduce the prediction error in the local satellite path.

Analysis of Channel Water Loss of the Agricultural Water Supply in a Gyeongcheon Drought Area (경천가뭄지역 농업용수 공급량의 수로손실 분석)

  • Cho, Gun Ho;Moon, Jin Kyoung;Choi, Kyung Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.53-62
    • /
    • 2020
  • The purpose of this study is to estimate the channel water loss of agricultural water supply in the command areas belong to Yechon irrigation channel of Gyeongcheon reservoir located Mungyeong-si, which area experienced a severe drought in 2015. The channel water loss was estimated by comparison of the irrigation water requirements (IWR) and agricultural water supply of the field data from 2012 to 2015. Further analysis was conducted to define the conveyance loss estimated based on the leakage holes and illegal pumping spots investigated through the field survey, and the distribution loss obtained by subtracting conveyance loss from the channel water loss. The annual rainfall decreased gradually, but the contribution of effective rainfall, available rain water to crop, increased to IWR during the study period. These phenomena resulted in the increase of agricultural water supply, and hence made greater the channel water loss simultaneously. The average channel water losses estimated as 36.8 % with 7.1 % of the conveyance loss and 29.7 % of distribution loss respectively. The distribution loss seems to be related to total number of rainy days, and irrigation schedules, while the conveyance loss was caused by irrigation channel aging conditions and illegal intake problems. In order to achieve sustainable agricultural water resources, the channel water loss needs to be reduced through the restoration of aged irrigation facilities and effective water managements in the fields.

A Study on the Water Resources Assessment for Irrigation Scheme in Malawi

  • AHN, SungSick;Kim, Jin-Hong
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.178-186
    • /
    • 2018
  • Generally, in terms of the development of irrigation scheme, the efficient water resource management that supplies the irrigation water in consideration of the required time and accurate quantity to grow the crop should be conducted. The water resource assessment should precede to supply the irrigation water efficiently. The water resources assessment is divided into the water requirement analysis and the water availability assessment. In case of Korea, the major crop is paddy rice unlike crops of Africa, such as sugarcane, maize, and cassava, etc. Because it is not familiar with the method for upland irrigation development in tropical area, it needs to know the water resources assessment for irrigation scheme development about these crops. The Natama Scheme in Chiradzulu District of the Southern Malawi was selected as study area, which has tropical climate. From the collected meteorological data, the evapotranspiration was analyzed by Penman-Monteith Method and the effective rainfall was analyzed by USDA Soil Conservation Service Method. This study displays the results that for study area, the evapotranspiration varies from 2.80 mm/day to 5.51 mm/day and the effective rainfall varied from 2.1mm to 149.0mm. According to the selected crop (Green Maize, Dry Maize), the unit water requirement (UWR) and water demand (WD) considering the irrigation efficiency, irrigation time and irrigation area were estimated to be $0.00122m^3/s/ha$ and $0.0122m^3/s$ respectively. For the water availability assessment, the runoff of Natama scheme was calculated by specific yield method. The water availability was evaluated through reviewed differences of discharge between $Q80_{intake}$ and Total WD, and the irrigation water can be supplied sufficiently in the existing 10ha of Natama scheme. As a result of reviewing the extensibility of irrigable area, total WD of scheme is $0.02313m^3/s$, and $Q80_{intake}$ is $0.02387m^3/s$ ($Q80_{intake}$ > Total WD). Therefore, Natama scheme can be extended from 10 ha to 17 ha in the dry season in consideration of the $Q80_{intake}$.

Runoff Analysing Considering the Distribution of Conentration Time and Slope Length for a Small Basin (소유역의 홍수도달시간과 서면길이의 분포특성을 고려한 홍수유출해석)

  • 조홍재
    • Water for future
    • /
    • v.19 no.2
    • /
    • pp.139-148
    • /
    • 1986
  • The hydrologic response function in a small basin is expressed by the distribution function of slope length. The characteristics of topographical factors is represented to the concentration time, and the instantaneous unit hydrograph is derived as a hydrologic rsponse function by application of probobility density function. The averaging process of runoff characteristics within watershed was analyzed for a few small watershed where was split up the small basin itself. The method of calculation of the effective rainfall should play important roles in the transformation process from hydrologic response function to runoff hydrograph. In this paper, the Horton's infiltration quation is used as a method of calculation of effective rainfall, a new response function of runoff process is derived. The $\Phi$-index method and the infiltration method are tested by comparing the observed and estimated values.

  • PDF

Projection of Consumptive Use and Irrigation Water for Major Upland Crops using Soil Moisture Model under Climate Change (토양수분모형을 이용한 미래 주요 밭작물 소비수량 및 관개용수량 전망)

  • Nam, Won Ho;Hong, Eun Mi;Jang, Min Won;Choi, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.77-87
    • /
    • 2014
  • The impacts of climate change on upland crops is great significance for water resource planning, estimating crop water demand and irrigation scheduling. The objective of this study is to predict upland crop evapotranspiration, effective rainfall and net irrigation requirement for upland under climate change, and changes in the temporal trends in South Korea. The changes in consumptive use and net irrigation requirement in the six upland crops, such as Soybeans, Maize, Potatoes, Red Peppers, Chinese Cabbage (spring and fall) were determined based on the soil moisture model using historical meteorological data and climate change data from the representative concentration pathway (RCP) scenarios. The results of this study showed that the average annual upland crop evapotranspiration and net irrigation requirement during the growing period for upland crops would increase persistently in the future, and were projected to increase more in RCP 8.5 than those in RCP 4.5 scenario, while effective rainfall decreased. This study is significant, as it provides baseline information on future plan of water resources management for upland crops related to climate variability and change.

A Study on the Determination of SCS-CN Using GIS (GIS를 이용한 SCS-CN 산정에 관한 연구)

  • Cho, Hong-Je;O, Jun-Ho;Nam, Byoung-Ho;Jung, Kyoung-Taek
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.1 s.28
    • /
    • pp.39-44
    • /
    • 2004
  • The SCS-CN method was known to have difficulties to the applied to the mountainous area like Korean river basins. This study focused to develop a distributed SCS-CN method considering river basin slopes from GIS data. For the purpose, the method was applied to Sulma river and compared with area weighted average method and distributed SCS-CN method using GIS. According to the results, SCS-CN method considering river basin slopes provided better effects on the estimating effective rainfall on the other methods. The necessity of the generalization of the results to the other rivers was discussed.

  • PDF

A Comparative Study on Forecasting Groundwater Level Fluctuations of National Groundwater Monitoring Networks using TFNM, ANN, and ANFIS (TFNM, ANN, ANFIS를 이용한 국가지하수관측망 지하수위 변동 예측 비교 연구)

  • Yoon, Pilsun;Yoon, Heesung;Kim, Yongcheol;Kim, Gyoo-Bum
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.123-133
    • /
    • 2014
  • It is important to predict the groundwater level fluctuation for effective management of groundwater monitoring system and groundwater resources. In the present study, three different time series models for the prediction of groundwater level in response to rainfall were built, those are transfer function noise model (TFNM), artificial neural network (ANN), and adaptive neuro fuzzy interference system (ANFIS). The models were applied to time series data of Boen, Cheolsan, and Hongcheon stations in National Groundwater Monitoring Network. The result shows that the model performance of ANN and ANFIS was higher than that of TFNM for the present case study. As lead time increased, prediction accuracy decreased with underestimation of peak values. The performance of the three models at Boen station was worst especially for TFNM, where the correlation between rainfall and groundwater data was lowest and the groundwater extraction is expected on account of agricultural activities. The sensitivity analysis for the input structure showed that ANFIS was most sensitive to input data combinations. It is expected that the time series model approach and results of the present study are meaningful and useful for the effective management of monitoring stations and groundwater resources.