• 제목/요약/키워드: Effective Matrix

검색결과 1,386건 처리시간 0.026초

유한요소법을 이용한 평직 세라믹 기지 복합재료의 등가물성치 산정 (Finite Element Analysis for Effective Properties of Ceramic Matrix Plain Woven Textile Composites)

  • 이성욱;조종두
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1163-1167
    • /
    • 2003
  • Effective properties of ceramic matrix plain woven textile composites were calculated using finite element analysis. The considered geometry is a unit cell of plain weave and the analysis was performed by commercial finite element program, ANSYS. The materials for analysis are 3 types for matrix, 1 type for fiber with various volume fraction. The result indicates that the effective properties of ceramic matrix composites can be controlled by the volume fraction. The result can be used for numerical analysis using ceramic matrix composites.

  • PDF

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

Effective markov transition matrix를 이용한 풍속예측 및 MCP 모델과 비교 (Accurate Wind Speed Prediction Using Effective Markov Transition Matrix and Comparison with Other MCP Models)

  • 강민상;손은국;이진재;강승진
    • 신재생에너지
    • /
    • 제18권1호
    • /
    • pp.17-28
    • /
    • 2022
  • This paper presents an effective Markov transition matrix (EMTM), which will be used to calculate the wind speed at the target site in a wind farm to accurately predict wind energy production. The existing MTS prediction method using a Markov transition matrix (MTM) exhibits a limitation where significant prediction variations are observed owing to random selection errors and its bin width. The proposed method selects the effective states of the MTM and refines its bin width to reduce the error of random selection during a gap filling procedure in MTS. The EMTM reduces the level of variation in the repeated prediction of wind speed by using the coefficient of variations and range of variations. In a case study, MTS exhibited better performance than other MCP models when EMTM was applied to estimate a one-day wind speed, by using mean relative and root mean square errors.

수직 공진기 반도체 레이저에서 전달 행렬 방법과의 비교를 통한 유효 공진기 모델의 타당성 검토 (On the Validity of the Effective Cavity Model with the Transfer Matrix Method as a Frame of Reference In VCSELs)

  • 김태용;김상배
    • 대한전자공학회논문지SD
    • /
    • 제41권7호
    • /
    • pp.31-36
    • /
    • 2004
  • Vortical-Cavity Surface-Emitting Laser(VCSEL)는 in-plane 형태의 레이저와는 달리 여러 층의 distributed Bragg reflector(DBR) mirror를 반사 면으로 사용하기 때문에 광출력이나 미분양자효율(differential quantum efficiency)을 계산하는 데에 많은 어려움이 따른다. 이러한 이유로 광출력, 광출력 비 및 미분양자효율 등의 성능 지수를 계산하는 방법으로 유효 공진기 모델과 전달행렬 방법(transfer matrix method) 등이 사용되고 있다. 유효 공진기 모델은 반사율 및 문턱이득을 계산하는 데에는 적합하지만 광출력, 광출력 비 및 외부양자효율을 계산하는 데에는 오차를 보인다. 그 이유는 유효 공진기 모델이 금속 전극 개구부 바로 아래 GaAs 층에서의 빛의 흡수는 고려하지 못하기 때문이다. 이 논문에서는 유효 공진기 모델로부터 구한 성능 지수 값들을 전달행렬 방법으로부터 구한 값들과 비교ㆍ검토하여, 유효 공진기 모델의 타당성에 대하여 살펴보고 전달행렬 방법의 유용성을 재확인하였다.

A New Model to Predict Effective Elastic Constants of Composites with Spherical Fillers

  • Kim, Jung-Yun;Lee, Jae-Kon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1891-1897
    • /
    • 2006
  • In this study, a new model to predict the effective elastic constants of composites with spherical fillers is proposed. The original Eshelby model is extended to a finite filler volume fraction without using Mori-Tanaka's mean field approach. When single filler is embedded in the matrix, the effective elastic constants of the composite are computed. The composite is in turn considered as a new matrix, where new single filler is again embedded in the matrix. The predicted results by the present model with a series of embedding procedures are compared with those by Mori-Tanaka, self-consistent, and generalized self-consistent models. It is revealed through parametric studies such as stiffness ratio of the filler to the matrix and filler volume fraction that the present model gives more accurate predictions than Mori-Tanaka model without using the complicated numerical scheme used in self-consistent and generalized self-consistent models.

Modelling of effective irradiation swelling for inert matrix fuels

  • Zhang, Jing;Wang, Haoyu;Wei, Hongyang;Zhang, Jingyu;Tang, Changbing;Lu, Chuan;Huang, Chunlan;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2616-2628
    • /
    • 2021
  • The results of effective irradiation swelling in a wide range of burnup levels are numerically obtained for an inert matrix fuel, which are verified with DART model. The fission gas swelling of fuel particles is calculated with a mechanistic model, which depends on the external hydrostatic pressure. Additionally, irradiation and thermal creep effects are included in the inert matrix. The effects of matrix creep strains, external hydrostatic pressure and temperature on the effective irradiation swelling are investigated. The research results indicate that (1) the above effects are coupled with each other; (2) the matrix creep effects at high temperatures should be involved; and (3) ranged from 0 to 300 MPa, a remarkable dependence of external hydrostatic pressure can be found. Furthermore, an explicit multi-variable mathematic model is established for the effective irradiation swelling, as a function of particle volume fraction, temperature, external hydrostatic pressure and fuel particle fission density, which can well reproduce the finite element results. The mathematic model for the current volume fraction of fuel particles can help establish other effective performance models.

Optimization in Detecting Multiply-charged Protein Ions using MALDI TOF-MS

  • Lee, Jihyeon;Hong, Jangmi;Kim, Taehee;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • 제4권1호
    • /
    • pp.21-23
    • /
    • 2013
  • The effects of trifluoroacetic acid (TFA) were evaluated on the generation of multiply charged ions of cytochrome c in a 2-nitrophloroglucinol (2-NPG) matrix in high-vacuum, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The presence of 1% TFA in the 2-NPG matrix solution was more effective in generating multiply charged protein ions than matrix solutions containing 0.1% or 0% TFA. Regarding the matrix itself, with 1% TFA, 2-NPG was significantly more effective in generating multiply charged ions than 2,5-dihydroxybenzoic acid (2,5-DHB). The maximum charge state of cytochrome c was +8 when using a 2-NPG matrix containing 1% TFA.

입자와 섬유로 보강된 SMC 복합재의 기계적 특성에 관한 연구 (Mechanical Properties of Particle and Fiber Reinforced SMC Composites)

  • 정현조;윤성호
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.173-182
    • /
    • 1996
  • An analytical model has been developed to predict the elastic properties of a filled resin reinforced by chopped fibers, a three-phase composite such as a filled sheet molding compound(SMC). In the model the matrix material and fillers form an effective matrix. The effective matrix is then considered to be reinforced with long fibers lying in the sheet plane but randomly oriented in the plane. Expressions for the resulting transversely isotropic composite properties are explicitly presented. Using this model, the Young's and shear moduli are calculated for the SMC sample with filler weight fraction of 35% and fiber content of 30%. The same properties are also determined experimentally. The agreement between the calculated and measured elastic moduli is found to be very good for the in-plane properties. However, the out-of-plane properties show a large difference because the effect of voids is not taken into account in the model.

  • PDF

실리콘 산화질화물 기지상 적용에 따른 Au 나노입자 분산 복합체 박막의 광학적 특성 (Effect of Silicon Oxynitride Matrix on the Optical Properties of Au Nanoparticles Dispersed Composite Film)

  • 조성훈;이경석
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.637-643
    • /
    • 2009
  • In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in $SiO_xN_y$ films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between $SiO_2$ and $Si_3N_4$. The Au nanoparticles were embedded in the $SiO_xN_y$ matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 $\mu$m thick Au:$SiO_xN_y$ nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using $SiO_2$ matrix. The use of $SiO_xN_y$ matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.

SOLUTION OF RICCATI TYPES MATRIX DIFFERENTIAL EQUATIONS USING MATRIX DIFFERENTIAL TRANSFORM METHOD

  • Abazari, Reza
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1133-1143
    • /
    • 2009
  • In this work, we successfully extended dimensional differential transform method (DTM), by presenting and proving some new theorems, to solve the non-linear matrix differential Riccati equations(first and second kind of Riccati matrix differential equations). This technique provides a sequence of matrix functions which converges to the exact solution of the problem. Examples show that the method is effective.

  • PDF