• Title/Summary/Keyword: Effective Flow Area

Search Result 467, Processing Time 0.034 seconds

Kalman Filter Estimation of the Servo Valve Effective Orifice Area for a Auxiliary Power Unit (보조 동력장치용 서보밸브 유효 오리피스 면적의 칼만필터 추정)

  • Zhang, J.F.;Kim, C.T.;Jeong, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Flow rate is one of the important variables for precise motion control and detection of the faults and fluid loss in many hydraulic components and systems. But in many cases, it is not easy to measure it directly. The orifice area of a servo valve by which the fluid flows is one of key factors to monitor the flow rate. In this paper, we have constructed an estimation algorithm for the effective orifice area by using the model of a servo valve cylinder control system and Kalman filter algorithm. Without geometry information about the servo valve, it is shown that the effective orifice area can be estimated by using only displacement and pressure data corrupted with noise. And the effect of the biased sensor data and system parameter errors on the estimation results are discussed. The paper reveals that sensor calibration is important in accurate estimation and plausible parameter data such as oil bulk modulus and actuator volume are acceptable for the estimation without any error. The estimation algorithm can be used as an useful tool for detecting leakage, monitoring malfunction and/or degradation of the system performance.

  • PDF

EFFECT OF EXIT SHAPE ON TURBULENT OUTFLOWS IN A DISTRIBUTION MANIFOLD (유량분배 매니폴드의 유출유동에 대한 출구형상 영향 해석)

  • Lee, Joon Woo;Park, Tae Seon
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2014
  • Three-dimensional turbulent flows of a distribution manifold are studied by a turbulence model. To investigate the geometrical effects of the manifold, the length and area of exit port are changed. From the results, flow structures related to the outflow uniformity are examined and the deparure angles are obtained. The exit configuration depending on the departure angle has advantages to the outflow uniformity. That is, the decreased exit area in the streamwise direction improves the uniformity of exit flow. For the uniform effusion, the change of exit port by departure angle is more effective them the change of exit area.

Development of Up- and Down-flow Constructed Wetland for Advanced Wastewater Treatment in Rural Communities (소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발)

  • Kim, Hyung-Joong;Yoon, Chun-G.;Kwun, Tae-Young;Jung, Kwang-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.113-124
    • /
    • 2006
  • The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni;Neharia, Driss;Nehari, Taieb
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.235-243
    • /
    • 2022
  • The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.

Processing and Analysis of LANDSAT MSS Data for Extraction of Coastal Flow Patterns - around Incheon Bay - (연안수리현상 파악을 위한 LANDSAT MSS Data의 처리와 해석 -인천해역을 중심으로-)

  • 안철호;안기원;안호준
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.4 no.2
    • /
    • pp.59-75
    • /
    • 1986
  • The purpose of this study is to determine the most effective image analysis technique for extraction of coastal flow patterns from LANDSAT MSS data. Choosing the coastal area of Incheon, LANDSAT MSS data of oceanic area, which has generally low values of CCT data in comparison with the adjacent land was used On the basis of the above preparation, the most effective image analysis procedure of LANDSAT MSS data for the case of extraction of coastal flow patterns has been obtained through contrast stretching, color composite, and compression of bi-band image data.

  • PDF

Analysis of thermal energy efficiency for hollow fiber membranes in direct contact membrane distillation

  • Park, Youngkyu;Lee, Sangho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.347-353
    • /
    • 2019
  • Although membrane distillation (MD) has great promise for desalination of saline water sources, it is crucial to improve its thermal efficiency to reduce the operating cost. Accordingly, this study intended to examine the thermal energy efficiency of MD modules in a pilot scale system. Two different modules of hollow fiber membranes were compared in direct contact MD mode. One of them was made of polypropylene with the effective membrane area of $2.6m^2$ and the other was made of polyvinylidene fluoride with the effective membrane area of $7.6m^2$. The influence of operation parameters, including the temperatures of feed and distillate, feed flow rate, and distillate flow rate on the flux, recovery, and performance ratio (PR), was investigated. Results showed that the two MD membranes showed different flux and PR values even under similar conditions. Moreover, both flow rate and temperature difference between feed and distillate significantly affect the PR values. These results suggest that the operating conditions for MD should be determined by considering the module properties.

Numerical Analysis for Evaluation of Ejection Capacity Relationship of Safety Valves in Pressure Regulating Station (II) - Flow Analysis and Required Effective Discharge Area of Safety Valve - (정압기지내의 안전밸브 분출용량 관계식 검증을 위한 유동해석 (II) - 안전밸브 유동 해석 및 필요분출면적 -)

  • Gwon, Hyuk-Rok;Roh, Kyung-Chul;Kim, Young-Seop;Lee, Seong-Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.105-109
    • /
    • 2008
  • A safety valve has a valve mechanism for the automatic release of gas from piping system when the pressure exceeds preset limit cause of a defect of a pressure regulator, condensation of water in a pipe. Therefore, for the safety of pressure regulating station, it is essential to study the flow regime and characteristics of safety valve. This article presents the numerical analysis on the flow analysis, the ejection capacity and required effective discharge area of the safety valve that is established in pressure regulating station. Then, the results are compared and analyzed with domestic and foreign regulations such as API(America Petroleum Institute), EN(European Standard), and NF(Norme Francise). Moreover, the installation number of safety valve is considered by using domestic and foreign regulations and maximum reguired effective discharge area of safety valve.

  • PDF

Optimization of Vegetative Filter Strip using VFSMOD-w model and Genetic-Algorithm (VFSMOD-w 모형과 유전자 알고리즘을 이용한 식생여과대의 최적화)

  • Park, Youn Shik;Hyun, Geunwoo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.159-165
    • /
    • 2014
  • Vegetative Filter Strip (VFS) is one of effective Best Management Practices (BMPs) to prevent sediment-laden water problem, is installed at the edge of source area such agricultural area so that sediment occurred in source area is trapped by VFS before it flow into stream or river. Appropriate scale of it needs to be simulated before it is installed, considering various field conditions. In this study, a model using VFSMOD-w model and Genetic Algorithm to determine effective VFS length was developed, it is available to calibrate input parameter related to source area sediment yield through thousands of VFSMOD-w simulations. Useful DBs, moreover, are stored in the model so that very specific input parameters can be used with reasonable values. Compared simulated values to observed data values for calibration, R2 and Nash-Stucliffe model efficiency coefficient were 0.74 and 0.65 in flow comparison, and 0.89 and 0.79 in sediment comparison. The model determined 1.0 m of Filter Length, 0.18 of Filter Slope, and 0.2 cm of Filter Media Spacing to reduce 80% of sediment by VFS. The model has not only Auto-Calibration module also DBs for specific input parameters, thus, the model is expected to be used for effective VFS scale.

Thickness of shear flow path in RC beams at maximum torsional strength

  • Kim, Hyeong-Gook;Lee, Jung-Yoon;Kim, Kil-Hee
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.303-321
    • /
    • 2022
  • The current design equations for predicting the torsional capacity of RC members underestimate the torsional strength of under-reinforced members and overestimate the torsional strength of over-reinforced members. This is because the design equations consider only the yield strength of torsional reinforcement and the cross-sectional properties of members in determining the torsional capacity. This paper presents an analytical model to predict the thickness of shear flow path in RC beams subjected to pure torsion. The analytical model assumes that torsional reinforcement resists torsional moment with a sufficient deformation capacity until concrete fails by crushing. The ACI 318 code is modified by applying analytical results from the proposed model such as the average stress of torsional reinforcement and the effective gross area enclosed by the shear flow path. Comparison of the calculated and observed torsional strengths of existing 129 test beams showed good agreement. Two design variables related to the compressive strength of concrete in the proposed model are approximated for design application. The accuracy of the ACI 318 code for the over-reinforced test beams improved somewhat with the use of the approximations for the average stresses of reinforcements and the effective gross area enclosed by the shear flow path.

A Study of the Gasdynamics of Perforated Wall (다공벽의 기체역학에 관한 연구)

  • Gwak, Jong-Ho;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.538-543
    • /
    • 2003
  • Perforated wall has long been employed to control a variety of flow phenomena. It has been, in general, characterized by a porosity of the perforated wall. However, this porosity value does not take account of the number and detailed shape of porous holes, but is defined by only the ratio of the perforated area to total wall surface area. In order to quantify the porous wall effects on the flow control performance, an effective porosity should be known with the detailed flow properties inside the porous holes. In the present study, a theoretical analysis using a small disturbance method is performed to investigate detailed flow information through porous hole and a computational work is also carried out using the two-dimensional, compressible Navier-Stokes equations. Both the results are compared with existing experimental data. The gasdynamical porosity is defined to elucidate the effect of perforated wall.

  • PDF