• Title/Summary/Keyword: Effective Flow Area

Search Result 466, Processing Time 0.031 seconds

Measurement of Effective and Total Impervious Ratio and Its Usage for Watershed Management (유효 및 총불투수율의 산정과 유역관리에서의 활용방안)

  • Choi, Ji-Yong;Koh, Eun-Ju
    • Journal of Environmental Policy
    • /
    • v.7 no.3
    • /
    • pp.121-140
    • /
    • 2008
  • The impervious cover ratio has been used as an important measure for tracing water environment characteristics in watershed. Impervious cover is divided into total impervious cover and effective impervious cover, and its size varies depending on the land use characteristics of a watershed. Total impervious cover can be easily measured using existing land use maps or land cover map, while it takes a considerable amount of time and labor to measure the effective impervious cover, as water flow should be identified at each site. This study is intended to calculate the total impervious cover and effective cover of a sample site, compare their characteristics, and find a method to apply effective and total impervious cover ratios toward watershed management. The analysis of the sample site showed that the effective impervious cover rate(39.7%) was less than the total impervious cover rate(43%). This suggests that it would be acceptable, in terms of time and cost, if total impervious cover is applied as the representative impervious cover ratio of a watershed considering that it was used as basic data to analyze the effect that impervious cover has on the water environment.

  • PDF

An Analysis on the Major Parameter and the Relations of Pressure Difference Effect of Leakage Area in the Smoke-Control Zone (제연구역의 주요 매개 변수 및 누설 면적 변화를 고려한 차압 형성 관계 분석)

  • You, Woo Jun;Ko, Gwon Hyun;SaKong, Seong Ho;Nam, Jun-Seok;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • This study is experimentally analyzed to extract the major parameters affecting the performance of the smoke-control system and the relations of pressure difference between vestibule and supply air pressure zone effect of supply mass flow rate and leakage area in the smoke-control zone. To obtain this, the mock-up building of three-story scale with a total of 10 compartments was constructed, and several apparatus were also installed for in-situ measurement of the ventilation flow rate, pressure difference between compartments, smoke defensive air velocity, the opening-closing force of door, etc. This article show that pressure difference in the smoke-control zone is significantly related with leakage area of vestibule in low pressure region, leakage area of supply air pressure in over pressure region and both of them in pressure control region when the pressure control range of damper is 45 Pa~55 Pa.

A Study on Water Quality and Amount of Flowing at Nonpoint Source of Nairin Stream (내린천수계 비점오염원 오염물질 유출량조사)

  • Huh, In-Ryang;Park, Sung-Bin;Oh, Heung-Seok;Kim, Yeong-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.220-225
    • /
    • 2009
  • This study evaluates the water quality of the river near the alpine farmland in the upper Naerin stream, which is a typical stream of the upper Bukhan River with muddy water generation, by the flow examination, it aims to estimate the characteristics of nonpoint sources flowing out from the investigated area and figure out effective methods to reduce them. According to the result of water quality examination, the average BOD of the area not affected by the cultivated land among the areas of the upper Naerin River was 0.47mg/l, and total phosphorous was 0.007mg/l; thus, it maintained the cleanliness level of Ia. The average BOD of the area with the alpine farmland was 0.52mg/l, which was similar to the one of the non-cultivated land. But total phosphorous concentration was 0.023mg/l, which was more than three times higher than the area belonging to level II due to the effect of fertilizer ingredients discharged from the cultivated land. About the loadings of the investigated area generated from each of the pollution sources, BOD was 878.5kg/day and total phosphorous was 79.7kg/day. Moreover, for the load density, BOD was $2.22kg/day.km^2$ and total phosphorous was shown as $0.20kg/day.km^2$. Regarding the rates generated from nonpoint sources like land among the loadings per pollution sources, BOD was 54%, total nitrogen was 91%, and total phosphorous was 73.4%. Therefore, it was shown that most of the nutrients were produced from the nonpoint sources. The level of BOD runoff loading in the Jaun River area, where nonpoint sources were mainly generated, was 37.1kg/day and total phosphorous was 1.33kg/day. The flow rates to the generated amount were estimated as 10.5% and 4.7% each.

A proposal of unit watershed for water management based on the interaction of surface water and groundwater (지표수-지하수 연계 기반의 통합수자원 관리를 위한 단위유역 제안)

  • Kim, Gyoo-Bum;Hwang, Chan-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.spc1
    • /
    • pp.755-764
    • /
    • 2020
  • In South Korea, 850 standard watersheds and 7,807 KRF catchment areas have been used as basic maps for water resources policy establishment, however it becomes necessary to set up new standard maps with a more appropriate scale for the integrated managements of surface water-groundwater as well as water quantity-quality in the era of integrated water management. Since groundwater has a slow flow velocity and also has 3-D flow properties compared to surface water, the sub-catchment size is more effective than the regional watershed for the evaluation of surface water-groundwater interaction. The KRF catchment area, which has averagely a smaller area than the standard watershed, is similar to the sub-catchment area that generally includes the first-order or second-order tributaries. Some KRF catchment areas, which are based on the surface reach, are too small or large in a wide plain or high mountain area. Therefore, it is necessary to revise the existing KRF area if being used as a unit area for integrated management of surface-water and groundwater. A unit watershed with a KRF area of about 5 to 15 ㎢ can be effective as a basic unit for water management of local government considering a tributary composition and the location of groundwater wells, and as well it can be used as a basic tool for water demand-supply evaluation, hydrological observation system establishment, judgment of groundwater permission through a total quantity management system, pollution assessment, and prioritizing water policy, and etc.

CFD Application for Design and Development of Centrifugal Compressors (원심압축기의 설계 개발을 위한 CFD의 응용과 전망)

  • Kang Shin-Hyoung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.12-28
    • /
    • 1995
  • CFD techniques are widely used for the design and development of turbomachinery. The design and performance prediction, evaluation of performace and analysis are all important for the successful development of the machinery. The characteristics of the sturcture and performace of the centrifugal compressor are reviewed for the effective application of CFD techniques. The examples of flow calculations through an impeller and a channel diffuser are presented and phenomenological aspects are discussed. The future research topics of CFD area are also suggested.

  • PDF

Extinguishing Charactristics of Water Mist by Discharge Properties (방사특성 변화에 따른 미세물분무의 소화특성)

  • 이경덕;신창섭
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.41-48
    • /
    • 2001
  • Halogen-based fire suppressing agents have been the most effective fire suppressants and widely used for flammable liquid and electric fire. However they have environmental problems causing stratospheric ozone depletion and globe warming. As a substitution of halon, fire suppression system using fine water mist is one of an effective fire suppressant. Suffocating and cooling effects of water mist are increased by the evaporation characteristics because it has droplet size less than 1,000 $\mu{m}$ and very large surface area. In this study, the extinguishing characteristics of fire was measured with changing of water mist droplet size, flow density; discharge pressure, and fire size. As a result, the extinguishing time of pool fire was shortened with the increase of flow density and in case of low flow density less than 0.5$\pm$0.05 ml/$\textrm{cm}^2$ . min, the extinguishing time was shortened with the increase of droplet size. The cycling discharge was effective for $\eta$-heptane pool fire, and total amount of water mist required to extinguish fire was reduced to a quarter compare with continuous discharge.

  • PDF

Effects of the Lift Valve Opening Area on Water Hammer Pump Performance and Flow Behavior in the Valve Chamber

  • Saito, Sumio;Dejima, Keita;Takahashi, Masaaki;Hijikata, Gaku;Iwamura, Takuya
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.109-116
    • /
    • 2012
  • Water hammer pumps can effectively use the water hammer phenomenon for water pumping. They are capable of providing an effective fluid transport method in regions without a well-developed social infrastructure. The results of experiments examining the effect of the geometric form of water hammer pumps by considering their major dimensions have been reported. However, these conventional studies have not fully evaluated pump performance in terms of pump head and flow rate, common measures of pump performance. The authors have focused on the effects on the pump performance of various geometric form factors in water hammer pumps. The previous study examined how the hydrodynamic characteristics was affected by the inner diameter ratio of the drive and lift pipes and the angle of the drive pipe, basic form factors of water hammer pumps. The previous papers also showed that the behavior of water hammer pump operation could be divided into four characteristic phases. The behavior of temporal changes in valve chamber and air chamber pressures according to the air volume in the air chamber located downstream of the lift valve was also clarified in connection with changes in water hammer pump performance. In addition, the effects on water hammer pump performance of the length of the spring attached to the drain valve and the drain pipe angle, form factors around the drain valve, were examined experimentally. This study focuses on the form of the lift valve, a major component of water hammer pumps, and examines the effects of the size of the lift valve opening area on water hammer pump performance. It also clarifies the behavior of flow in the valve chamber during water hammer pump operation.

Experimental studies on stabilization techniques for ground over abandoned subsurface excavations

  • Pal Samir K.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.142-149
    • /
    • 2003
  • Blind hydraulic backfilling is a commonly used technique for subsidence control of the strata over unapproachable waterlogged underground excavations. In this investigation model studies on all the three variants of this technique, namely, hydro-pneumatic or air-assisted gravity backfilling, pumped-slurry backfilling and simple gravity backfilling, have been carried out in fully transparent models of the underground excavations. On examination of the filling process, it was revealed that in all the three cases, the basic process of filling occurs by sand transport along one or more meandering channels. The relative influence of sand, water and air flow rates on the area of filling from a single inlet point and the hydraulic pressure loss per unit length were studied in details. In hydro-pneumatic backfilling process, the air bubbles while moving upward through the meandering channels provide an additional buoyant force over and above the available hydraulic head. In this way the area of filling from a single borehole may be quite large even at small flow rates of water. During actual field implementation the injected air, if not released completely from the rise side holes, may cause troubles by way of creating potholes on the surface. The pumped-slurry technique has shown its capability of filling a relatively larger area at faster rate, especially when high-volume, low-pressure method was selected. But simple gravity filling was also found to be equally effective method as slurry pumping, especially when flow rates were high. In the second and third method discussed above, examination of variations of injection pressure was also done and its relation with physical phenomenon was also attempted. Some empirical relationships were also developed using multivariate regression with a view to help the practicing engineers.

  • PDF

Hydraulic Characteristic Analysis for Prevention of River Disaster at Estuary in the Eastern Coast of Korea (동해안 하천 하구부의 하천재해 방지를 위한 수리특성 분석)

  • Choi, Jong-Ho;Jun, Kye-Won;Yoon, Yong-Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • The significant sedimentation at the estuary in the eastern coast of Korea frequently causes river mouth occlusion where disconnection between the river and sea is observed. River mouth occlusion causing watershed retention raises the environmental risk of the area as it impairs water quality and threatens the area's safety in the event of floods. This study proposes a plan to maintain stability of river channel and flow of flood discharge at the estuary with loss of its function for disaster prevention. To this end, the study tries to change the location and width of stream path, focusing on the center line of stream near the sand bar of river mouth. This allows to identify a shape of stream path that leads the most stable flow. To review the result, this study uses the SRH-2D, a model for two-dimensional hydraulic analysis, and conduct numeric simulation. The simulation result showed that the most effective plan for maintaining the stable flow of running water without having the area sensitive to changes in hydraulic characteristics is to lower the overall river bed height of the sand bar near the center line of stream to a equal level.

Analysis of Urban Flood Damage Using SWMM5 and FLUMEN Model of Sadang Area in Korea

  • Li, Heng;Kim, Yeonsu;Lee, Seungsoo;Song, Miyeon;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.396-396
    • /
    • 2015
  • Frequent urban floods affect the human safety and economic properties due to a lack of the capacity of drainage system and the increased frequency of torrential rainfall. The drainage system has played an important role in flooding control, so it is necessary to establish the effective countermeasures considering the connection between drainage system and surface flow. To consider the connection, we selected SWMM5 model for analyzing transportation capacity of drainage system and FLUMEN model for calculating inundation depth and time variation of inundation area. First, Thiessen method is used to delineate the sub-catchments effectively base on drainage network data in SWMM5. Then, the output data of SWMM5, hydrograph of each manhole, were used to simulate FLUMEN to obtain inundation depth and time variation of inundation area. The proposed method is applied to Sadang area for the event occurred in $27^{th}$ of July, 2011. A total of 11 manholes, we could check the overflow from the manholes during that event as a result of the SWMM5 simulation. After that, FLUMEN was utilized to simulate overland flow using the overflow discharge to calculate inundation depth and area on ground surface. The simulated results showed reasonable agreements with observed data. Through the simulations, we confirmed that the main reason of the inundation was the insufficient transportation capacities of drainage system. Therefore cooperation of both models can be used for not only estimating inundation damages in urban areas but also for providing the theoretical supports of the urban network reconstruction. As a future works, it is recommended to decide optimized pipe diameters for efficient urban inundation simulations.

  • PDF